Piping Stress-Strain Correlation for Seismic Loading

1988 ◽  
Vol 110 (4) ◽  
pp. 444-450
Author(s):  
G. Stawniczy ◽  
W. R. Bak ◽  
G. Hau

This paper establishes limits on piping material strains for ASME Boiler and Pressure Vessel Code Level D loadings that ensure a limitation of deformation and provide suitable safety margins. In establishing the strain limits, potential piping failure modes due to compressive wrinkling and low-cycle fatigue are considered. A stress-strain correlation methodology to convert linear, elastically calculated Code Class 2 and 3 equation (9)-Level D stresses to strains is established. This correlation is based on the fatigue evaluation procedure of the Code and is verified by comparison with test results. A detailed discussion of test results compared with the stress-strain correlation methodology is also presented.

Author(s):  
Masaki Shiratori ◽  
Yoji Ochi ◽  
Izumi Nakamura ◽  
Akihito Otani

A series of finite element analyses has been carried out in order to investigate the failure behaviors of degraded bent pipes with local thinning against seismic loading. The sensitivity of such parameters as the residual thickness, locations and width of the local thinning to the failure modes such as ovaling and local buckling and to the low cycle fatigue damage has been studied. It has been found that this approach is useful to make a reasonable experimental plan, which has to be carried out under the condition of limited cost and limited period.


Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

In February/March 2007, The NRC issued Regulatory Guide “RG1.207” and Argonne National Laboratory issued NUREG/CR-6909 that is now applicable in the US for evaluations of PWR environmental effects in fatigue analyses of new reactor components. In order to assess the conservativeness of the application of this NUREG report, Low Cycle Fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in air environment a fatigue behavior consistent with the ANL reference “air” mean curve, as published in NUREG/CR-6909. LCF tests in a PWR environment were performed at various strain amplitude levels (± 0.6% or ± 0.3%) for two loading conditions corresponding to a simple or to a complex strain rate history. The simple loading condition is a fully reverse triangle signal (for comparison purposes with tests performed by other laboratories with the same loading conditions) and the complex signal simulates the strain variation for an actual typical PWR thermal transient. In addition, two various surface finish conditions were tested: polished and ground. This paper presents the comparisons of penalty factors, as observed experimentally, with penalty factors evaluated using ANL formulations (considering the strain integral method for complex loading), and on the other, the comparison of the actual fatigue life of the specimen with the fatigue life predicted through the NUREG report application. For the two strain amplitudes of ± 0.6% and ± 0.3%, LCF tests results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates give “Fen” penalty factors close to those estimated using the ANL formulation (NUREG/6909). However, for the lower strain amplitude level and a triangle loading signal, the ANL formulation is pessimistic compared to the AREVA NP test results obtained for polished specimens. Finally, it was observed that constant amplitude LCF test results obtained on ground specimens under complex loading simulating an actual sequence of a cold and hot thermal shock exhibits lower combined environmental and surface finish effects when compared to the penalty factors estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins, whereas the current ASME approach seems sufficient to cover significant environmental effects for representative loadings and surface finish conditions of reactor components.


1962 ◽  
Vol 84 (3) ◽  
pp. 389-399 ◽  
Author(s):  
B. F. Langer

Methods are described for constructing a fatigue curve based on strain-fatigue data for use in pressure vessel design. When this curve is used, the same fatigue strength-reduction factor should be used for low-cycle as for high-cycle conditions. When evaluating the effects of combined mean and alternating stress, the fatigue strength-reduction factor should be applied to both the mean and the alternating component, but then account must be taken of the reduction in mean stress which can be produced by yielding. The complete fatigue evaluation of a pressure vessel can be a major task for the designer, but it can be omitted, or at least drastically reduced, if certain requirements can be met regarding design details, inspection, and magnitude of transients. Although the emphasis in this paper is on pressure vessel design, the same principles could be applied to any structure made of ductile metal and subjected to limited numbers of load cycles.


Author(s):  
Wangwen Zhao ◽  
Richard Turner ◽  
Jian Liang

Under seismic loading, structural hot spots can experience very high levels of stress and many random stress reversals. Conventional stress based methods cannot assess the failure state in detail when stress is beyond the elastic limit and nominal stress reversals are more than double the yield stress. A method has been created to fully reproduce the true stress/ strain history by using 1) generalised Masing’s rule with equivalent cyclic energy dissipation to model cyclic stress/strain relation, 2) Neuber’s method to calculate inelastic strain concentration factor, and 3) relative effective notch factor determined from comparing S-N curves of different joint classes. From this reproduced strain history, strain cycles can be counted and low cycle fatigue analysis can be conducted by using Miner’s rule and by estimating damage from the strain based failure criteria such as Coffin-Mason method. This method has been implemented in a numeric procedure and coded in a FORTRAN program called CYSTRA (as for CYclic STRain Analysis). It takes input of “nominal” random stress history directly from general structural software, linear or non-linear, local or global, and calculates extreme strain and strain cycles at multiple hot spots for the whole structure efficiently. Thus it greatly facilitates failure assessment for offshore structures which can have a large number of hot spots within the structure, unlike mechanical devices commonly assessed in strain based analysis where detailed FE based methods can be used.


Sign in / Sign up

Export Citation Format

Share Document