A Rating Procedure for Solar Domestic Water Heating Systems

1983 ◽  
Vol 105 (4) ◽  
pp. 430-439 ◽  
Author(s):  
S. A. Klein ◽  
A. H. Fanney

A rating procedure for solar domestic hot water systems is described which combines the advantages of short-term system tests and correlations of long-term thermal performance. The testing procedure consists of two indoor tests which are in accordance with ASHRAE Standard 95-1981, except for one additional measurement needed only for systems employing a heat exchanger between the collector fluid and the potable water. The test results are plotted in a manner in which they can be used to estimate the long-term performance of the solar water heating system for any location where site-specific, monthly-average meterological data are available. The annual solar function obtained in this manner provides the recommended rating indicator. The validity of this rating procedure is first demonstrated by simulations. Further support is provided by experiments conducted at the National Bureau of Standards.

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Huai S. Xue

Long-term performance estimations were performed on a nonstandard domestic solar water heating system by f-Chart, interactive F-Chart software, and φ¯,f-Chart methods. Results of estimations were compared to gain insight of their applicability. Results from F-Chart software and f-Chart agree well and are greater than those from the φ¯,f-Chart method. Energy dumping should be given thorough reconsideration for the refinement of f-Chart and F-Chart software.


2018 ◽  
Vol 210 ◽  
pp. 02023
Author(s):  
Jan Skovajsa ◽  
Martin Zálešák

The article deals with the economic evaluation of investment and optimization of the solar water heating system for family houses. From the point of view of solar systems, the optimal solution is based on the specific application of it. The design is dependent on the location of solar thermal collectors and ration between active aperture area and real daytime consumption. Common calculations according to actual standards often give overstated results, which also reflected in the value of the investments. The article presents the research of optimal parameters of the thermal solar system for preparing of domestic hot water. A combination of related standards and software TRNSYS are used to find optimal parameters. Thanks to created and verified simulation models, it is possible to design parameters so as to avoid under-dimensioning or over-dimensioning of the solar system. Energy price is another factor affects the payback period of investments. This is affected by the used energy sources and their combination. For example, buildings that use electricity to heat water or heating have different energy charges than a building that uses natural gas. So, the aim is to find technically and economically efficient solution.


Author(s):  
Chunhui Wu ◽  
Susan C. Mantell ◽  
Jane H. Davidson

Abstract Polymer components have been proposed for use in domestic solar hot water heating systems. A polymer heat exchanger is under development for such systems. For heat transfer considerations, the heat exchanger will be comprised of many thin walled tubes. The heat exchanger must survive 10 years of service at high pressure (1.55 MPa) and high temperature (82°C). A novel method has been developed for evaluating the long term performance (creep) of the polymer tubing. Traditional creep testing, performed with dog bone test specimens can not be applied because the thin walled tubing has anisotropic material properties. Consequently, performance must be evaluated directly on the extruded tubing. The method entails wrapping a Constantan wire around the tube specimen to continuously record the hoop strain. For pressure loading of tubing, this method offers significant improvements over strain gage instrumentation. In this paper, the test method is described, an analysis of the strain transfer between the tubing and wire wrap is presented, and strain data for polypropylene tubing measured with a strain gage and wire wrap are compared. The data show that the wire measurement method can be successfully used for the characterization of long term mechanical behavior of polymer tubes.


2010 ◽  
Vol 171-172 ◽  
pp. 215-218
Author(s):  
Hai Ying Wang ◽  
Song Tao Hu ◽  
Jia Ping Liu

Solar water heating system is used to supply hot water all-year-round for a new dormitory building. Flat solar energy collectors are mounted on the roof. The hot water tank and pumps are installed together with the air conditioning equipments in the plant room. Air cooled heat pump is used to provide cooling in summer, and high temperature water from boiler room (in old building) is used as heat source in winter. Usually auxiliary heating is necessary to improve the stability and reliability of solar water heating system. In this case, we take full use of the equipment of air conditioning system instead of electricity as auxiliary heating resources. In this paper, we introduced the design of the solar water heating system and the auxiliary heating method by air conditioning systems. The control strategies to fulfill all the functions and switch between different conditions are also introduced.


Sign in / Sign up

Export Citation Format

Share Document