Displacement Analysis of Spatial Five-Link Mechanisms Using (3×3) Matrices With Dual-Number Elements

1969 ◽  
Vol 91 (1) ◽  
pp. 152-156 ◽  
Author(s):  
A. T. Yang

A closure equation, in terms of matrices with dual-number elements, for spatial five-link mechanisms, is presented in this paper. From the equation, a set of displacement equations for a RCRCR mechanism with general proportions is obtained; the input-output relationship is expressed as a fourth-degree algebraic equation and formulas to determine other linkage variables are expressed in closed form.

1973 ◽  
Vol 2 (4) ◽  
pp. 238-240
Author(s):  
R. V. Dukkipati

Using (3 x 3) matrices with dual-number elements, closed-form displacement relationships are derived for a spatial five-link R-C-R-C-P mechanism. The input-output closed form displacement relationship is obtained as a second order polynomial in the output displacement. For each set of the input and output displacements obtained from the equation, all other variable parameters of the mechanism are uniquely determined. A numerical illustrative example is presented. The derived input-output relationship can be used to synthesize an R-C-R-C-P function generating mechanism for a maximum of 15 precision conditions.


1971 ◽  
Vol 93 (1) ◽  
pp. 221-226 ◽  
Author(s):  
A. H. Soni ◽  
P. R. Pamidi

Using (3 × 3) matrices with dual-number elements, closed form displacement relationships are derived for a spatial five-link R-R-C-C-R mechanism. The input-output closed form displacement relationship is an eighth degree polynomial equation. A numerical example is presented.


Author(s):  
A. K. Dhingra ◽  
A. N. Almadi ◽  
D. Kohli

Abstract This paper presents closed-form polynomial solutions to the displacement analysis problem of planar 10-link mechanisms with 1 degree-of-freedom (DOF). Using the successive elimination procedure presented herein, the input-output (I/O) polynomials as well as the number of assembly configurations for five mechanisms resulting from two 10-link kinematic chains are presented. It is shown that the displacement analysis problems for all five mechanisms can be reduced to a univariate polynomial devoid of any extraneous roots. This univariate polynomial corresponds to the I/O polynomial of the mechanism. In addition, one of the examples also illustrates how trigonometric manipulations in conjunction with tangent half-angle substitutions can lead to non-trivial extraneous roots in the solution process. Theoretical conditions for identifying and eliminating these extraneous roots are also presented.


Author(s):  
M.O.M. Osman ◽  
R. V. Dukkipati

Using (3 x 3) matrices with dual-number elements, closed-form displacement relationships are derived for a spatial six-link R-C-P-R-P-R mechanism. The input-output closed form displacement relationship is obtained as a second order polynomial in the output displacement. For each set of the input and output displacements obtained from the equation, all other variable parameters of the mechanism are uniquely determined. A numerical illustrative example is presented. Using the dual-matrix loop equation, with proper arrangement of terms and following a procedure similar to that presented, the closed-form displacement relationships for other types of six-link 3R + 2P + 1C mechanisms can be obtained. The input-output equation derived may also be used to generate the input-output functions for five-link 2R + 2C + 1P mechanisms and four-link mechanisms with one revolute and three cylinder pairs.


1983 ◽  
Vol 105 (1) ◽  
pp. 78-87
Author(s):  
Hiram Albala ◽  
David Pessen

Based on the displacement equations for the general n-bar, single-loop spatial linkage, obtained elsewhere, the displacement analysis for a special case of the 7R spatial mechanism is carried out. In this mechanism the successive rotation axes are perpendicular to each other, the distances between axes 3-4, 4-5, 5-6, are equal and the offsets along axes 4 and 5 are zero, when input axis is labeled axis 1. In this fashion, there still remain nine free linkage parameters. Input-output equation is of the eighth-degree in the tangent of half the output angle. A particular case of this one, where all the distances between axes are equal and all the offsets along axes are zero, leads to an input-output equation of the fourth-degree in the same quantity, with a maximum of four closures. This mechanism resulted to be a double-rocker.


Author(s):  
A. K. Dhingra ◽  
A. N. Almadi ◽  
D. Kohli

Abstract This paper presents a closed-form approach, based on the theory of resultants, to the displacement analysis problem of planar 10-link 1-DOF mechanisms. Since each 10-link mechanism has 4 independent loops, its displacement analysis problem can be written as a system of 4 reduced loop-closure equations in 4 unknowns. This system of 4 reduced loop closure equations, for all non-trivial mechanisms resulting from 230 10-link kinematic chains, can be classified into 22 distinct structures. Using the successive and repeated elimination procedures presented herein, it is shown how each of these structures can be reduced into a univariate polynomial devoid of any extraneous roots. This univariate polynomial corresponds to the input-output (I/O) polynomial of the mechanism. Based on the results presented, it can be seen that the displacement analysis problem for all 10-link 1-DOF mechanisms is completely solvable, in closed-form, devoid of any extraneous roots.


Author(s):  
Abdulaziz N. Almadi ◽  
Anoop K. Dhingra ◽  
Dilip Kohli

Abstract This paper addresses the closed-form displacement analysis problem of all mechanisms which can be derived from 9-link kinematic chains with 2-DOF, and 10-link kinematic chains with 3-DOF. The successive elimination procedure developed in the companion paper is used to solve the resulting displacement analysis problems. The input-output polynomial degrees as well as the number of assembly configurations for all mechanisms resulting from 40 9-link kinematic chains, and 74 10-link kinematic chains with non-fractionated degrees of freedom (DOF) are given. The computational procedure is illustrated through two numerical examples. The displacement analysis problem for all mechanisms resulting from these chains is completely solvable, in closed-form, devoid of any spurious roots.


1971 ◽  
Vol 38 (4) ◽  
pp. 1029-1035 ◽  
Author(s):  
M. S. C. Yuan

Using the method of line coordinates, the input-output displacement equation of the RPRCRR six-link spatial mechanism is obtained as an algebraic equation of 16th order. For each set of the input and output angles obtained from the equation, all other variable parameters of the mechanism are also determined. A numerical example is presented.


1999 ◽  
Vol 23 (1A) ◽  
pp. 95-112
Author(s):  
C.M. Wong ◽  
K.C. Chan ◽  
Y.B. Zhou

This paper presents the displacement analysis of the three variants of a spatial kinematic loop containing 3R and 1CP joints using vector algebraic method. The closed-form input-output displacement equations of this mechanism are derived as forth-order polynomials. Analytical steps and expressions are laid out uniformly and simply.


Author(s):  
Y. B. Zhou ◽  
R. O. Buchal ◽  
R. G. Fenton

Abstract Closed form input-output displacement equations are derived for the R0-2R-2C mechanisms using the vector algebraic method. As compared to previous works, the proposed method is characterized by its standardized analysis steps, compact expressions and simplicity.


Sign in / Sign up

Export Citation Format

Share Document