output displacement
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 48)

H-INDEX

9
(FIVE YEARS 2)

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Jinqiang Gan ◽  
Jiarong Long ◽  
Ming-Feng Ge

This paper presents a design of a 3DOF XYZ bi-directional motion platform based on Z-shaped flexure hinges. In the presented platform, bridge-type mechanisms and Z-shaped flexure hinges are adopted to amplify its output displacement. Bi-direction motion along the X-axis and Y-axis follows the famous differential moving principle DMP, and the bi-directional motion along the Z-axis is realized by using the reverse arrangement of the Z-shaped flexure hinges along the X-axis and Y-axis. Statics analysis of the proposed platform is carried out by the energy method, compliance matrix method, and force balance principle. Meanwhile, the Lagrange method is used to analyze the dynamics of the platform. A series of simulations are conducted to demonstrate the effectiveness of the proposed design. The simulation results show that the average displacements of the platform in the XYZ-axis are ±125.58 μm, ±126.37 μm and ±568.45 μm, respectively.


2021 ◽  
Author(s):  
Chia–Nan Wang ◽  
Thi Diem-My Le

Abstract In manipulating the assembly of micro-components, the symmetrical microgripper mechanism often causes destruction, damaging the micro-components during manipulation. The reason is due to the phenomenon of non-uniform clamping force output of the clamp. From this disadvantage, a new asymmetric microgripper structure is proposed with stable output clamping force. The asymmetric microgripper structure will have a smaller output displacement than the symmetric structure. Therefore, to increase the output displacement gain, a flexible hinge with a triple stair half bridge-style mechanism is adopted to design the amplifier of the asymmetrical microgripper. The finite element method is applied to analyze the displacement and stress. The optimization process is performed based on the geometric parametric properties of the structure. Using the technology for order preference by similarity to ideal solution (TOPSIS) based on the grey relationship analysis (GRA) obtained the maximal displacement output and minimal stress. The results show that the maximum output displacement is 5,818 mm, stress after analysis is 2,432MPa. The test is conducted to verify the optimal results and the effectiveness of the optimization method. Finally, experimental experiments were performed, with a 4.8% difference from the FEA results. The results from the experimental test verify that the microgripper's maximum displacement amplification ratio is approximately 58.2 times.


Author(s):  
Liqun Cheng ◽  
Wanzhong Chen ◽  
Liguo Tian

Piezoelectric actuator (PEA) is widely applied in the field of micro/nano high precision positioning. However PEA has the phenomenon of hysteresis non-linearity between input voltage and output displacement, due to the natural property of piezoelectric materials. The PEA hysteresis can be compensated by hysteresis models, which makes the input voltage and output displacement more linearity. The research work on compensation of PEA hysteresis by using various hysteresis models has been being a hot topic. This paper presents a modified direct inverse rate-independent Prandtl–Ishlinskii (PI) (MDIPI) model for compensating the hysteresis of PEA. The proposed MDIPI model has two different sets of operators compared with classical PI (CPI) model having one set of operators. For the two sets operators in MDIPI model one is rate operators and the other is modified classical operators. By combining the two sets operators, the MDIPI model has the properties of the adaption and accuracy in hysteresis compensation. The MDIPI model can be used as feedforward controller to compensate different reference trajectories. Parameters of MDIPI model are calculated by matlab optimization tool box. The experiments of compensating the complex displacement trajectory and sinusoidal trajectory are validated on a platform of commercial PEA. The MDIPI model has achieved more accurate results than the Krasnosel’skii–Pokrovkii (KP), Preisach and CPI models. It is effective in improving the accuracy of PEA hysteresis compensation.


2021 ◽  
pp. 1-14
Author(s):  
Xiaodong Chen ◽  
ZM Xie ◽  
Huifeng Tan

Abstract How to enlarge the output displacement is a key issue in the research field of microgrippers. It is difficult to further enlarge the output displacement for the traditional displacement transmission mechanism (DTM). In this research, a two-stage amplification cylinder-driven DTM based on the compliant mechanisms is designed to realize the displacement output expansion. The opening and closing of the clamping jaws is driven by the air cylinder to enlarge the output displacement of the microgripper. According to the analysis of statics model of the mechanism, the relationship between the output displacement of the microgripper and the driving pressure of the cylinder is established. The magnification of the microgripper is obtained using a dynamic model. Moreover, based on the finite element analysis, the mechanical structure parameters are optimized. The microgripper was fabricated by utilizing wire electro discharge machining (WEDM) technique, and then a series of experiments were carried out to obtain the relationship between the displacement and the driving pressure. It is found that the maximum output displacement measured is 1190.4μm under the pressure of 0-0.6 Mpa, corresponding to the magnification of 47.63. Compared with the results of finite element analysis and theoretical calculation, the test results have a discrepancy of 2.39% and 6.62%, respectively. The microgripper has successfully grasped a variety of micro-parts with irregular shapes, and parallel grasping can be achieved, demonstrating the potential application of this design in the field of micromanipulation.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1379
Author(s):  
Jinqing Zhan ◽  
Yifeng Li ◽  
Zhen Luo ◽  
Min Liu

This paper presents an approach for the topological design of multi-material compliant mechanisms with global stress constraints. The element stacking method and the separable stress interpolation scheme are applied to calculate the element stiffness and element stress of multi-material structures. The output displacement of multi-material compliant mechanisms is maximized under the constraints of the maximum stress and the structural volume of each material. The modified P-norm method is applied to aggregate the local von Mises stress constraints for all the finite elements to a global stress constraint. The sensitivities are calculated by the adjoint method, and the method of moving asymptotes is utilized to update the optimization problem. Several numerical examples are presented to demonstrate the effectiveness of the proposed method. The appearance of the de facto hinges in the optimal mechanisms can be suppressed effectively by using the topology optimization model with global stress constraints, and the stress constraints for each material can be met.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1366
Author(s):  
Wen Wang ◽  
Jiahui Wang ◽  
Ruijin Wang ◽  
Zhanfeng Chen ◽  
Fuming Han ◽  
...  

Piezoelectric actuators are widely used in the field of micro- and nanopositioning due to their high frequency response, high stiffness, and high resolution. However, piezoelectric actuators have hysteresis nonlinearity, which severely affects their positioning accuracy. As the driving frequency increases, the performance of piezoelectric actuators further degrades. In addition, the impact of force on piezoelectric actuators cannot be ignored in practical applications. Dynamic hysteresis with force-voltage coupling makes the hysteresis phenomenon more complicated when force and driving voltage are both applied to the piezoelectric actuator. Existing hysteresis models are complicated, or inaccurate in describing dynamic hysteresis with force-voltage coupling. To solve this problem, a force-voltage-coupled Prandtl–Ishlinskii (FVPI) model is proposed in this paper. First, the influence of driving frequency and dynamic force on the output displacement of the piezoelectric actuators are analyzed. Then, the accuracy of the FVPI model is verified through experiments. Finally, a force integrated direct inverse (F-DI) compensator based on the FVPI model is designed. The experimental results from this study show that the F-DI compensator can effectively suppress dynamic hysteresis with force-voltage coupling of piezoelectric actuators. This model can improve the positioning accuracy of piezoelectric actuators, thereby improving the working accuracy of the micro- or nano-operating system.


Author(s):  
Xinqi Tian ◽  
Weishan Chen ◽  
Yingxiang Liu ◽  
Jie Deng ◽  
Kai Li

Abstract Improving the performance of the motion stages driven by piezoelectric actuators is an enduring topic for expanding their applications. For the motion stage with a travel range of tens of millimeters, trade-offs are inevitable between getting high speed (hundreds of millimeters per second) and high resolution (tens of nanometers), due to the inherent limitations of the operating principles of the piezoelectric actuators. In order to improve the output resolution of an H-shaped piezoelectric ultrasonic actuator, sawtooth excitation voltages are used in this work rather than the conventional sinusoidal voltages in previous works. The configuration and operating principle of the actuator are discussed in detail. The actuator consists of two vertical and two horizontal longitudinal transducers. The ends of the vertical transducers act as the driving tips and drive the stage forward with the alternating slow extensions and rapid contraction, during which stick motions and slip motions of the stage are acquired. An analytic model is developed to estimate the horizontal and vertical output displacement of the driving tip. The maximum error between the predicted value of the analytical model and the experimental value is about 14%. A prototype of the motion stage is fabricated and experiments are carried out to evaluate its output characteristics. The experiment results confirm the operating principle and show that the resolution is upgraded to tens of nanometers. The prototype obtains a resolution of 19 nm, a maximum speed of 2.22 μm/s, and a maximum carrying load of 16.94 kg.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012042
Author(s):  
Zhenyang Lv ◽  
Manzhi Yang ◽  
Linyue Li ◽  
Kaiyang Wei ◽  
Xiaodong Zhang ◽  
...  

Abstract At present, there are shortcomings in the research of micro-drive amplification mechanism, such as insufficient precision and additional force. In this paper, a kind of micro-drive amplification mechanism is designed and its positioning accuracy is simulated. Firstly, a kind of micro-drive amplification mechanism is designed, which can accurately transform the input displacement of piezoelectric ceramic actuator (PZT) into the output displacement of a certain number of amplification. the theoretical motion magnification ratio of the mechanism is 3:1. Secondly, the kinematics and simulation of the mechanism were studied, and the conversion performance of the mechanism was analyzed. The results showed that the micro-drive amplification mechanism has the advantage of high positioning accuracy (maximum positioning error is 4.67%). Finally, through strength analysis and modal analysis, the performance of micro-drive amplification mechanism is studied. This study has some reference value for the research and application of precision micro-drive amplification mechanism.


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 285
Author(s):  
Zhen Lv ◽  
Muhammad Uzair ◽  
Xinjie Wang ◽  
Yafeng Liu

In this paper, a novel photovoltaic-electrostatic hybrid actuator with a slant lower electrode based on the PLZT ceramic is proposed. The mathematical model of photovoltaic-electrostatic hybrid actuator is established. Then, based on the mathematical model of photovoltaic-electrostatic hybrid actuator and the parameters identified, the mathematical simulation of the closed-loop displacement control for the photovoltaic-electrostatic hybrid actuator based on the PLZT ceramic is carried out. The results show that the displacement of the actuator can be controlled successfully at a particular value within the pull-in displacement by the light source. Furthermore, the response speed of the output displacement for photovoltaic-electrostatic hybrid actuator with a slant lower electrode is faster than that with a parallel lower electrode, offering a good potential to advance the current applications on micro-electro-mechanical system.


Author(s):  
Jinqing Zhan ◽  
Yu Sun ◽  
Min Liu ◽  
Benliang Zhu ◽  
Xianmin Zhang

Multi-material compliant mechanisms design enables potential design possibilities by exploiting the advantages of different materials. To satisfy mechanical/thermal impedance matching requirements, a method for multi-material topology optimization of large-displacement compliant mechanisms considering material-dependent boundary condition is presented in this study. In the optimization model, the element stacking method is employed to describe the material distribution and handle material-dependent boundary condition. The maximization of the output displacement of the compliant mechanism is developed as the objective function and the structural volume of each material is the constraint. Fictitious domain approach is applied to circumvent the numerical instabilities in topology optimization problem with geometrical nonlinearities. The method of moving asymptotes is applied to solve the optimization problem. Several numerical examples are presented to demonstrate the validity of the proposed method. The optimal topologies of the compliant mechanisms obtained by the proposed method can satisfy the specified material-dependent boundary condition.


Sign in / Sign up

Export Citation Format

Share Document