Steady Gravity Flow of Frictional-Cohesive Solids in Converging Channels

1964 ◽  
Vol 31 (1) ◽  
pp. 5-11 ◽  
Author(s):  
A. W. Jenike

Frictional-cohesive solids such as soil, ores, chemicals, sugar, flour are regarded as plastic and represented by the Jenike-Shield yield function [1] during steady flow. The stress-strain rate relations are based on isotropy, continuity, and a one-to-one dependence of density on the major pressure. In plane strain and in axial symmetry the stress field requires the solution of a system of two hyperbolic partial differential equations. The velocity field can then be computed by solving another system of two linear homogeneous partial differential equations of the hyperbolic type. In straight conical channels, a particular stress field called the “radial stress field” assumes a special importance because evidence has been presented elsewhere that all general fields tend to approach the radial stress fields in the vicinity of the vertex. Examples of numerical solutions of radial stress fields are given.

2019 ◽  
Vol 12 (1) ◽  
pp. 39-57
Author(s):  
Muhammad Ikhlaq Chohan ◽  
Kamal Shah

This manuscript is concerning to investigate numerical solutions for different classesincluding parabolic, elliptic and hyperbolic partial differential equations of arbitrary order(PDEs). The proposed technique depends on some operational matrices of fractional order differentiation and integration. To compute the mentioned operational matrices, we apply shifted Jacobi polynomials in two dimension. Thank to these matrices, we convert the (PDE) under consideration to an algebraic equation which is can be easily solved for unknown coefficient matrix required for the numerical solution. The proposed method is very efficient and need no discretization of the data for the proposed (PDE). The approximate solution obtain via this method is highly accurate and the computation is easy. The proposed method is supported by solving various examples from well known articles.


2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document