Discussion: “A Statistical Polyhedron Model of Abrasive Grain” (McAdams, H. T., 1963, ASME J. Eng. Ind., 85, pp. 388–393)

1963 ◽  
Vol 85 (4) ◽  
pp. 393-394
Author(s):  
J. Peklenik
1963 ◽  
Vol 85 (4) ◽  
pp. 388-393 ◽  
Author(s):  
H. T. McAdams

A statistical polyhedron model of abrasive grain is developed and its application to the design of abrasive cutting tools indicated. The model incorporates particle geometry and orientation with respect to the workpiece into a single concept useful in the prediction of cutting performance. Projective properties of the statistical polyhedron are exploited in a proposed method for measuring axial ratios of abrasive particles.


2000 ◽  
Vol 28 (3) ◽  
pp. 178-195 ◽  
Author(s):  
N. Amino ◽  
Y. Uchiyama

Abstract In this study, the relationships between friction and viscoelastic properties such as loss tangent tan δ and storage modulusE′ were examined. Wet skid resistance was measured using the British Pendulum Tester. The rubber specimens were rubbed againstfive silicone carbide cloths of differing abrasive grain sizes. The viscoelastic properties of the rubber specimens were measured with a viscoelasticspectrometer. From the data on wet skid resistance and viscoelastic properties, it is found that the coefficient of friction μ varies as follows:           μ = a + b · tan δ/E′ where a and b are constants. Tan δ/E′ was related to the hysteresis term of friction, and the μ-frequency curves were compared with the tan δ/E′ –frequency curves.


2021 ◽  
Vol 2 ◽  
Author(s):  
Zhiping Qiu ◽  
Han Wu ◽  
Isaac Elishakoff ◽  
Dongliang Liu

Abstract This paper studies the data-based polyhedron model and its application in uncertain linear optimization of engineering structures, especially in the absence of information either on probabilistic properties or about membership functions in the fussy sets-based approach, in which situation it is more appropriate to quantify the uncertainties by convex polyhedra. Firstly, we introduce the uncertainty quantification method of the convex polyhedron approach and the model modification method by Chebyshev inequality. Secondly, the characteristics of the optimal solution of convex polyhedron linear programming are investigated. Then the vertex solution of convex polyhedron linear programming is presented and proven. Next, the application of convex polyhedron linear programming in the static load-bearing capacity problem is introduced. Finally, the effectiveness of the vertex solution is verified by an example of the plane truss bearing problem, and the efficiency is verified by a load-bearing problem of stiffened composite plates.


2013 ◽  
Vol 680 ◽  
pp. 410-416 ◽  
Author(s):  
Jun Ming Wang ◽  
Fu Yuan Tong ◽  
Xiao Xue Li

By simplifying the geometric shape of abrasive grain in a cone-shape, the authors conduct the 3D dynamic finite element simulation on profile grinding with axial feed by single abrasive grain using deform-3D software. Analysis is made on the influence upon the grinding forces in case of the same grinding speed, the same grinding depth and the same friction factor between wheel and workpiece at different axial feed. The results show that the normal force and the tangential force increase with the increase of axial feed, but the axial force decreases with the axial feed.


Sign in / Sign up

Export Citation Format

Share Document