Relationships Between the Friction and Viscoelastic Properties of Rubber

2000 ◽  
Vol 28 (3) ◽  
pp. 178-195 ◽  
Author(s):  
N. Amino ◽  
Y. Uchiyama

Abstract In this study, the relationships between friction and viscoelastic properties such as loss tangent tan δ and storage modulusE′ were examined. Wet skid resistance was measured using the British Pendulum Tester. The rubber specimens were rubbed againstfive silicone carbide cloths of differing abrasive grain sizes. The viscoelastic properties of the rubber specimens were measured with a viscoelasticspectrometer. From the data on wet skid resistance and viscoelastic properties, it is found that the coefficient of friction μ varies as follows:           μ = a + b · tan δ/E′ where a and b are constants. Tan δ/E′ was related to the hysteresis term of friction, and the μ-frequency curves were compared with the tan δ/E′ –frequency curves.

1998 ◽  
Vol 26 (4) ◽  
pp. 241-257 ◽  
Author(s):  
H. Takino ◽  
H. Takahashi ◽  
K. Yamano ◽  
S. Kohjiya

Abstract Wet skid resistance for rubbers with a wide range of carbon black loadings and process oil loadings was investigated from the viewpoints of viscoelastic properties and abrasion properties. An analysis of wet skid resistance by the factors of Tα and BPST abrasion, which was effectively performed on a wide range of polymers in a previous report, gave a poor correlation this time. In the case of a wide range of carbon black loadings and oil loadings, the factors of tan δ and BPST abrasion had a good relationship with wet skid resistance. In this study, tan δ at 7°C was found to be a suitable factor corresponding to adhesion loss and hysteresis loss in rubber friction. By the evaluation of abrasions, BPST abrasion and PICO abrasion were estimated to be governed by different mechanisms.


1997 ◽  
Vol 70 (4) ◽  
pp. 584-594 ◽  
Author(s):  
H. Takino ◽  
R. Nakayama ◽  
Y. Yamada ◽  
S. Kohjiya ◽  
T. Matsuo

Abstract Many studies concerning tire wet skid resistance have been published in the past, but they have in general involved the use of only a few grades of SBR and BR. We have evaluated the British Portable Skid Tester (BPST) wet skid resistance of eighteen sulfur curable polymers which might be used for automobile tires. These results have been analyzed in relation to the viscoelastic properties of the polymer systems. Analysis of wet skid resistance in terms of the peak value of tan δ over a prescribed temperature range, designated as Tα, and abrasion loss—derived from the theory of rubber friction—was concluded to give a better general relationship for a wide range of polymers.


2020 ◽  
Vol 10 (13) ◽  
pp. 4478 ◽  
Author(s):  
Ruoming Huang ◽  
Qiwei Pan ◽  
Zhaohui Chen ◽  
Kunhao Feng

As commercial rubber in tires, silica-filled solution-polymerized styrene-butadiene rubber/butadiene rubber (SSBR/BR) compounds exhibited preferable wet skid resistance (WSR) properties, which could be further enhanced by the incorporation of some oligomeric resins. However, the untreated dicyclopentadiene (DCPD) resin shows a slight improvement in wet friction even if the good compatibility between DCPD and SBR owing to their common cyclic structures. For this problem to be addressed, we aimed to enhance its resin-silica interaction by reaction with maleic anhydride (MAH). In detail, the effect of MAH content on WSR, curing characteristics, physical-mechanical properties of the silica-filled SSBR/BR composites was investigated. When the MAH content is 4 wt% in the modified DCPD resin, the maximum enhancement of about 15% in tan δ values at 0 °C, as well as that of 17% in British pendulum skidding tester (BPST) index is obtained, indicating a desirable improvement in WSR. In addition of these two commonly used methods, water contact angles of the vulcanizates increase gradually with increasing MAH content, further confirming the remarkable performance of modified DCPD resin in WSR.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1820 ◽  
Author(s):  
Haijun Ji ◽  
Hui Yang ◽  
Liwei Li ◽  
Xinxin Zhou ◽  
Lan Yin ◽  
...  

Ester-functionalized styrene-butadiene rubber (dibutyl itaconate-styrene-butadiene rubber) (D-ESBR) was synthesized by low-temperature emulsion polymerization using dibutyl itaconate (DBI) as a modified monomer containing ester groups. Nonpetroleum-based silica with hydroxy groups was used as a filler to enhance the D-ESBR, which can provide excellent mechanical properties, low rolling resistance, and high wet skid resistance. During the preparation of the silica/D-ESBR nanocomposites, a hydrogen-bonding interface was formed between the hydroxy groups on the surface of silica and the ester groups in the D-ESBR macromolecules. As the content of ester groups in the D-ESBR increases, the dispersion of silica in the nanocomposites is gradually improved, which was verified by rubber process analyzer (RPA) and scanning electron microscopy (SEM). Overall mechanical properties of the silica/D-ESBR modified with 5 wt % DBI were improved and became superior to that of the non-modified nanocomposite. Compared with the non-modified silica/D-ESBR, the DBI modified silica/D-ESBR exhibited a lower tan δ value at 60 °C and comparable tan δ value at 0 °C, indicating that the DBI modified silica/D-ESBR had lower rolling resistance without sacrificing wet skid resistance.


1971 ◽  
Vol 44 (4) ◽  
pp. 996-1014 ◽  
Author(s):  
R. N. Kienle ◽  
E. S. Dizon ◽  
T. J. Brett ◽  
C. F. Eckert

Abstract 1. Car, wheel position, driver, inflation pressure, and shoulder drop have a statistically significant effect upon wear loss and need to bo taken into consideration before material factors affecting wear can be studied. 2. Variations in macrostructure of the polymers are not found to have a significant effect on wear as compared to microstructure variations. 3. At least two material factors control wear loss of tire treads. 4. When polymers are tested near their glass transition temperature (within 80° C), wear loss is dominated by viscoelastic properties. Viscoelastic properties can be related to wear loss through Tg or the combined effect of the cis, trans, vinyl, and styrene content. 5. At higher test temperatures (over 100° C above Tg) wear loss is dominated by a material factor that has a positive correlation with temperature. This is particularly noticeable when treads are worn under mild conditions. However, there is evidence that this wear factor is present at the testing nearer to Tg but is masked by the dominant viscoelastic effect. 6. The combined effect upon wear of the different material factors leads to an optimum wear resistance for any polymer in the butadiene—styrene system in the range of 75°–105° C above the Tg for that polymer. 7. For polymers tested at the same ambient temperature, (T), the effect of viscoelastic properties decreases non-linearly as T−Tg increases. 8. In the range of test severity studied, severity has little effect upon the inter-relationship of material factors. 9. In the range of test temperature where Tg dominates wear loss, skid distance on wet asphalt pavement is inversely related to wear rating.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3969
Author(s):  
Karolina Pycia ◽  
Lesław Juszczak

The aim of the study was to assess the influence of replacing wheat flour with hazelnuts or walnuts, in various amounts, on the thermal and rheological properties of the obtained systems. The research material were systems in which wheat flour was replaced with ground hazelnuts (H) or walnuts (W) in the amount of 5%, 10%, and 15%. The parameters of the thermodynamic gelatinization characteristics were determined by the differential scanning calorimetry method. In addition, the pasting characteristics were determined with the use of a viscosity analyzer and the viscoelastic properties were assessed. Sweep frequency and creep and recovery tests were used to assess the viscoelastic properties of the tested gels. It was found that replacing wheat flour with nuts increased the values of gelatinization temperature, gelatinization, and retrogradation enthalpy, and the degree of retrogradation. The highest viscosity was characteristic of the control sample (2039 mPa·s), and the lowest for the paste with 15% addition of walnuts (1120 mPa·s). Replacing the flour with nuts resulted in a very visible reduction in the viscosity of such systems. In addition, gels based on the systems with the addition of H and W were weak gels (tan δ = G″/G′ > 0.1), and the values of G′ and G″ parameters decreased with the increased share of nuts in the systems. Creep and recovery analysis indicated that the systems in which wheat flour was replaced with hazelnuts were less susceptible to deformation compared to the systems with the addition of W.


2010 ◽  
Vol 83 (1) ◽  
pp. 97-122 ◽  
Author(s):  
Xiao-Dong Pan ◽  
Paul Zakelj ◽  
Cara Adams ◽  
Akiko Neil ◽  
Greg Chaplin

Abstract The British pendulum skid tester (BPST) has been widely adopted for laboratory characterization of wet skid resistance (WSR) for rubber compounds. However, testing results are not yet well explained with material properties. For filled compounds made of the same styrene-butadiene rubber, on a Portland cement concrete surface wetted with water, WSR for compounds filled with inorganic oxides is higher than WSR for compounds filled with carbon black at the same filler volume fraction. However, such difference in WSR is eliminated under ethanol lubrication. Difference in WSR remains under ethanol lubrication between compounds filled with a reinforcing filler and compounds filled with a nonreinforcing filler. Accepting that dynamic deformation of rubber occurs in the frequency range between 103 and 106 Hz during testing with the BPST, loss tangent for the compounds is measured at various low temperatures but fails to correlate with WSR detected under water lubrication. Modification of bulk viscoelasticity from ethanol absorption should not be neglected for consideration of WSR under ethanol lubrication. During testing with the BPST, sliding noise generated by the assemblage of the spring and lever system in the pendulum with a rubber slider attached is captured under varied lubrication conditions. Both viscoelastic properties of rubber compounds and lubrication condition significantly affect sliding noise. However, no strict correlation between the intensity of sliding noise and WSR is observed. From frequency domain analysis, major components of the sliding noise lie in the frequency range between 500 and 5000 Hz for most compounds. For better understanding on testing with the BPST, modes of material deformation during dynamic sliding on a wet rough surface need to be further scrutinized.


2017 ◽  
Vol 57 ◽  
pp. 157-160 ◽  
Author(s):  
Anthony Herbert ◽  
Jennifer H. Edwards ◽  
Gemma L. Jones ◽  
Eileen Ingham ◽  
John Fisher

Sign in / Sign up

Export Citation Format

Share Document