convex polyhedron
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Sami Mezal Almohammad ◽  
Zsolt Lángi ◽  
Márton Naszódi

AbstractSteinitz’s theorem states that a graph G is the edge-graph of a 3-dimensional convex polyhedron if and only if, G is simple, plane and 3-connected. We prove an analogue of this theorem for ball polyhedra, that is, for intersections of finitely many unit balls in $$\mathbb {R}^3$$ R 3 .


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5364
Author(s):  
Wenjie Tang ◽  
Junping Chen ◽  
Chao Yu ◽  
Junsheng Ding ◽  
Ruyuan Wang

Pseudolite deployment is the premise of ground-based pseudolite system networking, which affects the coverage and positioning accuracy of ground-based pseudolite systems. Optimal deployment algorithms can help to achieve a higher signal coverage and lower mean horizontal precision factor (HDOP) with a limited number of pseudolites. In this paper, we proposed a multi-objective particle swarm optimization (MOPSO) algorithm for the deployment of a ground-based pseudolite system. The new algorithm combines Digital Elevation Model (DEM) data and uses the mean HDOP of the DEM grid to measure the geometry of the pseudolite system. The signal coverage of the pseudolite system was calculated based on the visual area analysis with respect to reference planes, which effectively avoids the repeated calculation of the intersection and improves the calculation efficiency. A selected area covering 10 km×10 km in the Jiuzhaigou area of China was used to verify the new algorithm. The results showed that both the coverage and HDOP achieved were optimal using the new algorithm, where the coverage area can be up to approximately 50% and 30% more than using the existing particle swarm optimization (PSO) and convex polyhedron volume optimization (CPVO) algorithms, respectively.


Author(s):  
Ta Van Tu

AbstractIn this paper, we propose a method for determining all minimal representations of a face of a polyhedron defined by a system of linear inequalities. Main difficulties for determining prime and minimal representations of a face are that the deletion of one redundant constraint can change the redundancy of other constraints and the number of descriptor index pairs for the face can be huge. To reduce computational efforts in finding all minimal representations of a face, we prove and use properties that deleting strongly redundant constraints does not change the redundancy of other constraints and all minimal representations of a face can be found only in the set of all prime representations of the face corresponding to the maximal descriptor index set for it. The proposed method is based on a top-down search strategy, is easy to implement, and has many computational advantages. Based on minimal representations of a face, a reduction of degeneracy degrees of the face and ideas to improve some known methods for finding all maximal efficient faces in multiple objective linear programming are presented. Numerical examples are given to illustrate the method.


Author(s):  
David Eppstein

AbstractAnswering a question posed by Joseph Malkevitch, we prove that there exists a polyhedral graph, with triangular faces, such that every realization of it as the graph of a convex polyhedron includes at least one face that is a scalene triangle. Our construction is based on Kleetopes, and shows that there exists an integer i such that all convex i-iterated Kleetopes have a scalene face. However, we also show that all Kleetopes of triangulated polyhedral graphs have non-convex non-self-crossing realizations in which all faces are isosceles. We answer another question of Malkevitch by observing that a spherical tiling of Dawson (Renaissance Banff, Bridges Conference, pp. 489–496, 2005) leads to a fourth infinite family of convex polyhedra in which all faces are congruent isosceles triangles, adding one to the three families previously known to Malkevitch. We prove that the graphs of convex polyhedra with congruent isosceles faces have bounded diameter and have dominating sets of bounded size.


2021 ◽  
Vol 2 ◽  
Author(s):  
Zhiping Qiu ◽  
Han Wu ◽  
Isaac Elishakoff ◽  
Dongliang Liu

Abstract This paper studies the data-based polyhedron model and its application in uncertain linear optimization of engineering structures, especially in the absence of information either on probabilistic properties or about membership functions in the fussy sets-based approach, in which situation it is more appropriate to quantify the uncertainties by convex polyhedra. Firstly, we introduce the uncertainty quantification method of the convex polyhedron approach and the model modification method by Chebyshev inequality. Secondly, the characteristics of the optimal solution of convex polyhedron linear programming are investigated. Then the vertex solution of convex polyhedron linear programming is presented and proven. Next, the application of convex polyhedron linear programming in the static load-bearing capacity problem is introduced. Finally, the effectiveness of the vertex solution is verified by an example of the plane truss bearing problem, and the efficiency is verified by a load-bearing problem of stiffened composite plates.


2020 ◽  
Vol 51 (1) ◽  
pp. 453-466
Author(s):  
Qiangkui Leng ◽  
Zuowei He ◽  
Yuqing Liu ◽  
Yuping Qin ◽  
Yujian Li

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 645
Author(s):  
Supanut Chaidee ◽  
Kokichi Sugihara

Given a set of constrained vertex norms, we proved the existence of a convex configuration with respect to the set of distinct constrained vertex norms in the two-dimensional case when the constrained vertex norms are distinct or repeated for, at most, four points. However, we proved that there always exists a convex configuration in the three-dimensional case. In the application, we can imply the existence of the non-empty spherical Laguerre Voronoi diagram.


Author(s):  
Petr Chelishchev ◽  
Knut Sørby

This paper presents algorithms for estimating the minimum volume bounding box based on a three-dimensional point set measured by a coordinate measuring machine. A new algorithm, which calculates the minimum volume with high accuracy and reduced number of computations, is developed. The algorithm is based on the convex hull operation and established theories about a minimum bounding box circumscribing a convex polyhedron. The new algorithm includes a pre-processing operation that removes convex polyhedron faces located near the edges of the measured object. As showed in the paper, the solution of the minimum bonding box is not based on faces located near the edges; therefore, we can save computation time by excluding them from the convex polyhedron data set. The algorithms have been demonstrated on physical objects measured by a coordinate measuring machine, and on theoretical 3D models. The results show that the algorithm can be used when high accuracy is required, for example in calibration of reference standards.


Sign in / Sign up

Export Citation Format

Share Document