A Fully Integrated Solution of the Problem of Laminar or Turbulent Flow in a Tube With Arbitrary Wall Heat Flux

1961 ◽  
Vol 83 (1) ◽  
pp. 96-98 ◽  
Author(s):  
R. N. Noyes
1979 ◽  
Vol 101 (3) ◽  
pp. 465-468 ◽  
Author(s):  
Chul Cho ◽  
M. N. O¨zis¸ik

The problem of freezing of a liquid in turbulent flow inside a circular tube whose wall is kept at a uniform temperature lower than the freezing temperature of the liquid is solved. The radius of the solid-liquid interface and the local wall heat flux are determined as a function of time and position along the tube for several different values of the Prandtl number and the freezing parameter.


2018 ◽  
Vol 54 (7) ◽  
pp. 2089-2099 ◽  
Author(s):  
S. Iyahraja ◽  
J. Selwin Rajadurai ◽  
S. Rajesh ◽  
R. Seeni Thangaraj Pandian ◽  
M. Selva Kumaran ◽  
...  

2008 ◽  
Vol 130 (12) ◽  
Author(s):  
David T. W. Lin ◽  
Hung Yi Li ◽  
Wei Mon Yan

An inverse solution scheme based on the conjugate gradient method with the minimization of the object function is presented for estimating the unknown wall heat flux of conjugated forced convection flows between two corotating disks from temperature measurements acquired within the flow field. The validity of the proposed approach is demonstrated via the estimation of three time- and space-dependent heat flux profiles. A good agreement is observed between the estimated results and the exact solution in every case. In general, the accuracy of the estimated results is found to improve as the temperature sensors are moved closer to the unknown boundary surface and the error in the measured temperature data is reduced.


Author(s):  
Arif Hussain ◽  
Muhammad Yousaf Malik ◽  
Mair Khan ◽  
Taimoor Salahuddin

Purpose The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface. Design/methodology/approach The fluid momentum problem is mathematically formulated by using the Prandtl–Eyring constitutive law. Also, the non-Fourier heat flux model is considered to disclose the heat transfer characteristics. The governing problem contains the nonlinear partial differential equations with appropriate boundary conditions. To facilitate the computation process, the governing problem is transmuted into dimensionless form via appropriate group of scaling transforms. The numerical technique shooting method is used to solve dimensionless boundary value problem. Findings The expressions for dimensionless velocity and temperature are found and investigated under different parametric conditions. The important features of fluid flow near the wall, i.e. wall friction factor and wall heat flux, are deliberated by altering the pertinent parameters. The impacts of governing parameters are highlighted in graphical as well as tabular manner against focused physical quantities (velocity, temperature, wall friction factor and wall heat flux). A comparison is presented to justify the computed results, it can be noticed that present results have quite resemblance with previous literature which led to confidence on the present computations. Originality/value The computed results are quite useful for researchers working in theoretical physics. Additionally, computed results are very useful in industry and daily-use processes.


1966 ◽  
Vol 88 (2) ◽  
pp. 214-222 ◽  
Author(s):  
W. T. Lawrence ◽  
J. C. Chato

A numerical method was developed for the calculation of entrance flows in vertical tubes for the cases of upflow or downflow and constant wall heat flux or constant wall temperature. The solutions were in excellent agreement with experimental data obtained with water flowing upward in a vertical heated tube. The results show that both the density and the viscosity have to be treated as nonlinear functions of temperature. Consequently, for the constant heat flux condition, the velocity and temperature profiles constantly change and never reach “fully developed” states. The transition to turbulent flow was also studied. The experimental measurements demonstrated that the transition process depends on the developing velocity profiles. For the constant heat flux case, transition will always occur at some axial position. For a given entrance condition, the distance to transition is fixed by the fluid flow rate and the wall heat flux. For the experimental results, a tentative transition criterion was obtained, which depends only on the velocity profile shape, fluid viscosity, and the entrance Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document