Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

2018 ◽  
Vol 54 (7) ◽  
pp. 2089-2099 ◽  
Author(s):  
S. Iyahraja ◽  
J. Selwin Rajadurai ◽  
S. Rajesh ◽  
R. Seeni Thangaraj Pandian ◽  
M. Selva Kumaran ◽  
...  
2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Ted D. Bennett

The historical approach to averaging the convection coefficient in tubes of constant wall heat flux leads to quantitative errors in short tubes as high as 12.5% for convection into fully developed flows and 33.3% for convection into hydrodynamically developing flows. This mistake can be found in teaching texts and monographs on heat transfer, as well as in major handbooks. Using the correctly defined relationship between local and average convection coefficients, eight new correlations are presented for fully developed and developing flows in round tubes and between parallel plates for the constant wall heat flux condition. These new correlations are within 2% of exact solutions for fully developed flows and within 6% of first principle calculations for hydrodynamically developing flows.


1963 ◽  
Vol 85 (4) ◽  
pp. 371-377 ◽  
Author(s):  
J. T. Yen

Effect of wall electrical conductance on laminar fully developed magnetohydrodynamic heat transfer in a channel with constant wall heat flux and exact magnetohydrodynamic boundary conditions are investigated. For channels with insulated walls, viscous dissipation is more important than joule heating for all Ec and M. For sufficiently large wall conductance, viscous dissipation is dominated by joule heating for all Ec, if M is large enough; both are in turn dominated by wall heat flux if Ec is large enough for all M. These and other conclusions are discussed in this paper.


1968 ◽  
Vol 1 (2) ◽  
pp. 120-124 ◽  
Author(s):  
NOBUO MITSUISHI ◽  
OSAMU MIYATAKE ◽  
MITSURU YANAGIDA

1979 ◽  
Vol 101 (3) ◽  
pp. 465-468 ◽  
Author(s):  
Chul Cho ◽  
M. N. O¨zis¸ik

The problem of freezing of a liquid in turbulent flow inside a circular tube whose wall is kept at a uniform temperature lower than the freezing temperature of the liquid is solved. The radius of the solid-liquid interface and the local wall heat flux are determined as a function of time and position along the tube for several different values of the Prandtl number and the freezing parameter.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3153-3164 ◽  
Author(s):  
Hamid Mohammadiun ◽  
Vahid Amerian ◽  
Mohammad Mohammadiun ◽  
Iman Khazaee ◽  
Mohsen Darabi ◽  
...  

The steady-state, viscous flow and heat transfer of nanofluid in the vicinity of an axisymmetric stagnation point of a stationary cylinder with constant wall heat flux is investigated. The impinging free-stream is steady and with a constant strain rate, k ?. Exact solution of the Navier-Stokes equations and energy equation are derived in this problem. A reduction of these equations is obtained by use of appropriate transformations introduced in this research. The general self-similar solution is obtained when the wall heat flux of the cylinder is constant. All the previous solutions are presented for Reynolds number Re = k ?a2/2n f ranging from 0.1 to 1000, selected values of heat flux and selected values of particle fractions where a is cylinder radius and n f is kinematic viscosity of the base fluid. For all Reynolds numbers, as the particle fraction increases, the depth of diffusion of the fluid velocity field in radial direction, the depth of the diffusion of the fluid velocity field in z-direction, shear-stresses and pressure function decreases. However, the depth of diffusion of the thermal boundary-layer increases. It is clear by adding nanoparticles to the base fluid there is a significant enhancement in Nusselt number and heat transfer.


Sign in / Sign up

Export Citation Format

Share Document