Measured Temperature Profiles Within the Superheated Boundary Layer Above a Horizontal Surface in Saturated Nucleate Pool Boiling of Water

1965 ◽  
Vol 87 (3) ◽  
pp. 333-340 ◽  
Author(s):  
B. D. Marcus ◽  
D. Dropkin

Temperature measurements were made within the superheated boundary layer above and adjacent to a horizontal heating surface in saturated, nucleate, pool boiling of water. A microthermocouple probe was used to measure the average temperature profiles and the temperature fluctuations within the boundary layer at heat fluxes from 1000 to 40,000 Btu/hr-sq ft. Correlations are presented for the “extrapolated” thickness of the boundary layer (δ) as well as the temperature distribution within it. It was found that the thickness (δ) could be expressed in terms of the heat-transfer coefficient as: δ = Chd. Also, the behavior of δ with system parameters was found to agree with that predicted by Han and Griffith [3] and Hsu [4] in their theories of nucleation from surface cavities. The temperature distribution in the boundary layer from the surface to 0.57δ was essentially linear and could be expressed: (T − Tb)/(Ts − Tb) = 1 − (y/δ). Above 0.57δ the temperature profile became an inverse power function of the height above the surface: (T − Tb)/(Ts − Tb) = D(y/δ)−a.

1968 ◽  
Vol 90 (3) ◽  
pp. 347-352 ◽  
Author(s):  
T. E. Lippert ◽  
R. S. Dougall

Experiments were made of the time-average temperature and thermal-fluctuation profiles occurring during pool boiling from a horizontal copper surface with water, Freon-113, and methanol as fluids. These profiles show a similar nature when scaled by a length called the sublayer thickness, δ. These results show that the correlations for sublayer thickness with other system parameters can be divided into two distinct regimes. For low heat fluxes, one relation correlates the data of all three fluids. At higher heat fluxes, the correlating requires different constants for the different fluids in a manner similar to boiling heat-transfer correlations.


1969 ◽  
Vol 91 (3) ◽  
pp. 315-328 ◽  
Author(s):  
I. Shai ◽  
W. M. Rohsenow

Experimental data for sodium boiling on horizontal surfaces containing artificial cavities at heat fluxes of 20,000 to 300,000 Btu/ft2 hr and pressures between 40 to 106 mm Hg were obtained. Observations are made for stable boiling, unstable boiling and “bumping.” Some recorded temperature variations in the solid close to the nucleating cavity are presented. It is suggested that for liquid metals the time for bubble growth and departure is a very small fraction of the total bubble cycle, hence the delay time during which a thermal layer grows is the most significant part of the process. On this basis the transient conduction heat transfer is solved for a periodic process, and the period time is found to be a function of the degree of superheat, the heat flux and the liquid thermal properties. A simplified model for stability of nucleate pool boiling of liquid metals is postulated from which the minimum heat flux for stable boiling can be found as a function of liquid-solid properties, liquid pressure, the degree of superheat, and the cavity radius and depth. At relatively low heat fluxes, convection currents have significant effects on the period time of bubble formation. An empirical correlation is proposed, which takes into account the convection effects, to match the experimental results.


2018 ◽  
Author(s):  
Sophie V. J. van der Horst ◽  
Andrew J. Pitman ◽  
Martin G. De Kauwe ◽  
Anna Ukkola ◽  
Gab Abramowitz ◽  
...  

Abstract. In response to a warming climate, temperature extremes are changing in many regions of the world. Therefore, understanding how the fluxes of sensible heat, latent heat and net ecosystem exchange respond and contribute to these changes is important. We examined 216 sites from the open access Tier 1 FLUXNET2015 and Free-Fair-Use La Thuile datasets, focussing only on observed (non-gap filled) data periods. We examined the availability of sensible heat, latent heat and net ecosystem exchange observations coincident in time with measured temperature for all temperatures, and separately for the upper and lower tail of the temperature distribution and expressed this availability as a measurement ratio. We showed that the measurement ratios for both sensible and latent heat fluxes are generally lower (0.79 and 0.73 respectively) than for temperature, and the measurement ratio of net ecosystem exchange measurements are appreciably lower (0.42). However, sites do exist with a high proportion of measured sensible and latent heat fluxes, mostly over the United States, Europe and Australia. Few sites have a high proportion of measured fluxes at the lower tail of the temperature distribution over very cold regions (e.g. Alaska, Russia) and at the upper tail in many warm regions (e.g. Central America and the majority of the Mediterranean region), and many of the world’s coldest and hottest regions are not represented in the freely available FLUXNET data at all (e.g. India, the Gulf States, Greenland and Antarctica). However, some sites do provide measured fluxes at extreme temperatures suggesting an opportunity for the FLUXNET community to share strategies to increase measurement availability at the tails of the temperature distribution. We also highlight a wide discrepancy between the measurement ratios across FLUXNET sites that is not related to the actual temperature or rainfall regimes at the site, which we cannot explain. Our analysis provides guidance to help select eddy covariance sites for researchers interested in exploring responses to temperature extremes.


Author(s):  
Yoichi Utanohara ◽  
Michio Murase ◽  
Akihiro Masui ◽  
Ryo Inomata ◽  
Yuji Kamiya

The structural integrity of the containment vessel (CV) for a pressurized water reactor (PWR) plant under a loss-of-coolant accident is evaluated by a safety analysis code that uses the average temperature of gas phase in the CV during reactor operation as an initial condition. Since the estimation of the average temperature by measurement is difficult, this paper addressed the numerical simulation for the temperature distribution in the CV of an operating PWR plant. The simulation considered heat generation of the equipment, the ventilation and air conditioning systems (VAC), heat transfer to the structure, and heat release to the CV exterior based on the design values of the PWR plant. The temperature increased with a rise in height within the CV and the flow field transformed from forced convection to natural convection. Compared with the measured temperature data in the actual PWR plant, predicted temperatures in the lower regions agreed well with the measured values. The temperature differences became larger above the fourth floor, and the temperature inside the steam generator (SG) loop chamber on the fourth floor was most strongly underestimated, −16.2  K due to the large temperature gradient around the heat release equipment. Nevertheless, the predicted temperature distribution represented a qualitative tendency, low at the bottom of the CV and increases with a rise in height within the CV. The total volume-averaged temperature was nearly equal to the average gas phase temperature. To improve the predictive performance, parameter studies regarding heat from the equipment and the reconsideration of the numerical model that can be applicable to large temperature gradient around the equipment are needed.


Sign in / Sign up

Export Citation Format

Share Document