The Physical Mechanism of Heat Transfer Augmentation in Stagnating Flows Subject to Freestream Turbulence

2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Andrew R. Gifford ◽  
Thomas E. Diller ◽  
Pavlos P. Vlachos

Experiments have been performed in a water tunnel facility to examine the physical mechanism of heat transfer augmentation by freestream turbulence in classical Hiemenz flow. A unique experimental approach to studying the problem is developed and demonstrated herein. Time-resolved digital particle image velocimetry (TRDPIV) and a new variety of thin-film heat flux sensor called the heat flux array (HFA) are used simultaneously to measure the spatiotemporal influence of coherent structures on the heat transfer coefficient as they approach and interact with the stagnation surface. Laminar flow and heat transfer at low levels of freestream turbulence (Tux¯=0.5–1.0%) are examined to provide baseline flow characteristics and heat transfer coefficients. Similar experiments using a turbulence grid are performed to examine the effects of turbulence with mean streamwise turbulence intensity of Tux¯=5.0% and an integral length scale of Λx¯=3.25 cm. At a Reynolds number of ReD¯=U∞¯D/υ=21,000, an average increase in the mean heat transfer coefficient of 64% above the laminar level was observed. Experimental studies confirm that coherent structures play a dominant role in the augmentation of heat transfer in the stagnation region. Calculation and examination of the transient physical properties for coherent structures (i.e., circulation, area averaged vorticity, integral length scale, and proximity to the surface) shows that freestream turbulence is stretched and vorticity is amplified as it is convected toward the stagnation surface. The resulting stagnation flow is dominated by dynamic, counter-rotating vortex pairs. Heat transfer augmentation occurs when the rotational motion of coherent structures sweeps cooler freestream fluid into the laminar momentum and thermal boundary layers into close proximity of the heated stagnation surface. Evidence in support of this mechanism is provided through validation of a new mechanistic model, which incorporates the transient physical properties of tracked coherent structures. The model performs well in capturing the essential dynamics of the interaction and in the prediction of the experimentally measured transient and time-averaged turbulent heat transfer coefficients.

2008 ◽  
Author(s):  
Andrew R. Gifford ◽  
Thomas E. Diller ◽  
Pavlos P. Vlachos

Experiments have been performed in a water tunnel facility to examine the physical mechanism of heat transfer augmentation by freestream turbulence in classical Hiemenz flow. A unique experimental approach to studying the problem is developed and demonstrated herein. Time-Resolved Digital Particle Image Velocimetry (TRDPIV) and a new variety of thin film heat flux sensor called the Heat Flux Array (HFA) are used simultaneously to measure the spatio-temporal influence of coherent structures on the heat transfer coefficient as they approach and interact with the stagnation region. Velocity measurements of grid generated freestream turbulence are first performed to quantify the turbulence intensity, integral length scale, and isotropy of the flow. Laminar flow and heat transfer at low levels of freestream turbulence (Tux ≅ 0.5–1.0%) are then examined to provide baseline flow characteristics and heat transfer coefficient. Similar experiments using the turbulence grid are then performed to examine the effects of turbulence with mean turbulence intensity, Tux ≅ 5.5%, and integral length scale, Λx ∼ 3.25 cm. At a mean Reynolds number of ReD = 21,000 an average increase in the mean heat transfer coefficient of 43% above the laminar level was observed. To better understand the mechanism of this augmentation, flow structures in the stagnation region are identified using a coherent structure identification scheme and tracked in time using a customized tracking algorithm. Tracking these structures reveals a complex flow field in the vicinity of the stagnation region. Filaments of vorticity from the freestream are amplified near the plate surface leading to the formation of counterrotating vortex pairs and single sweeping vortex structures. By comparing the transient heat flux measurements with the tracked vortex structures it is clear that heat transfer augmentation is due primarily to amplification of stream-wise vorticity and subsequent vortex formation near the surface. The vortex strength, length scale, and distance from the stagnation plate are key parameters affecting augmentation. Finally, a mechanistic model is examined which captures the physical interaction near the wall. Model results agree well with measured heat transfer augmentation.


Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Heat transfer coefficients and the resulting heat flux reduction due to film cooling on a flat plate downstream a row of cylindrical holes are investigated. Highly resolved two dimensional heat transfer coefficient distributions were measured by means of infrared thermography and carefully corrected for local internal testplate conduction and radiation effects [1]. These locally acquired data are processed to lateral average heat transfer coefficients for a quantitative assessment. A wide range variation of the flow parameters blowing rate and density ratio as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The effects of these dominating parameters on the heat transfer augmentation from film cooling are discussed and interpreted with the help of highly resolved surface results of effectiveness and heat transfer coefficients presented earlier [2]. A new method of evaluating the heat flux reduction from film cooling is presented. From a combination of the lateral average of both the adiabatic effectiveness and the heat transfer coefficient, the lateral average heat flux reduction is processed according to the new method. The discussion of the total effect of film cooling by means of the heat flux reduction reveals important characteristics and constraints of discrete hole ejection. The complete heat transfer data of all measurements are used as basis for a new correlation of lateral average heat transfer coefficients. This correlation combines the effects of all the dominating parameters. It yields a prediction of the heat transfer coefficient from the ejection position to far downstream, including effects of extreme blowing angles and hole spacing. The new correlation has a modular structure to allow for future inclusion of additional parameters. Together with the correlation of the adiabatic effectiveness it provides an immediate determination of the streamwise heat flux reduction distribution of cylindrical hole film cooling configurations.


2002 ◽  
Vol 124 (4) ◽  
pp. 699-709 ◽  
Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Heat transfer coefficients and the resulting heat flux reduction due to film cooling on a flat plate downstream a row of cylindrical holes are investigated. Highly resolved two-dimensional heat transfer coefficient distributions were measured by means of infrared thermography and carefully corrected for local internal testplate conduction and radiation effects. These locally acquired data are processed to lateral average heat transfer coefficients for a quantitative assessment. A wide range variation of the flow parameters blowing rate and density ratio as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The effects of these dominating parameters on the heat transfer augmentation from film cooling are discussed and interpreted with the help of highly resolved surface results of effectiveness and heat transfer coefficients presented earlier. A new method of evaluating the heat flux reduction from film cooling is presented. From a combination of the lateral average of both the adiabatic effectiveness and the heat transfer coefficient, the lateral average heat flux reduction is processed according to the new method. The discussion of the total effect of film cooling by means of the heat flux reduction reveals important characteristics and constraints of discrete hole ejection. The complete heat transfer data of all measurements are used as basis for a new correlation of lateral average heat transfer coefficients. This correlation combines the effects of all the dominating parameters. It yields a prediction of the heat transfer coefficient from the ejection position to far downstream, including effects of extreme blowing angles and hole spacing. The new correlation has a modular structure to allow for future inclusion of additional parameters. Together with the correlation of the adiabatic effectiveness it provides an immediate determination of the streamwise heat flux reduction distribution of cylindrical hole film-cooling configurations.


2008 ◽  
Vol 12 (3) ◽  
pp. 33-44 ◽  
Author(s):  
Raja Balakrishnan ◽  
Lal Dhasan ◽  
Saravanan Rajagopal

An investigation on in-tube flow boiling heat transfer of R-134a/R-290/R-600a (91%/4.068%/4.932% by mass) refrigerant mixture has been carried out in a varied heat flux condition using a tube-in-tube counter-flow test section. The boiling heat transfer coefficients at temperatures between -5 and 5?C for mass flow rates varying from 3 to 5 g/s were experimentally arrived. Acetone is used as hot fluid, which flows in the outer tube of diameter 28.57 mm, while the test fluid flows in the inner tube of diameter 9.52 mm. By regulating the acetone flow rate and its entry temperature, different heat flux conditions between 2 and 8 kW/m2 were maintained. The pressure of the refrigerant was maintained at 3.5, 4, and 5 bar. Flow pattern maps constructed for the considered operating conditions indicated that the flow was predominantly stratified and stratified wavy. The heat transfer coefficient was found to vary between 500 and 2200 W/m2K. The effect of nucleate boiling prevailing even at high vapor quality in a low mass and heat flux application is high-lighted. The comparison of experimental results with the familiar correlations showed that the correlations over predict the heat transfer coefficients of this mixture.


Author(s):  
A. C. Nix ◽  
T. E. Diller

Detailed time records of velocity and heat flux were measured near the stagnation point of a cylinder in low-speed air flow. The freestream turbulence was controlled using five different grids positioned to match the characteristics from previous heat flux experiments at NASA Glenn using the same wind tunnel. A hot wire was used to measure the cross-flow velocity at a range of positions in front of the stagnation point. This gave the average velocity and fluctuating component including the turbulence intensity and integral length scale. The heat flux was measured with a Heat Flux Microsensor located on the stagnation line underneath the hot-wire probe. This gave the average heat flux and the fluctuating component simultaneous with the velocity signal, including the heat flux turbulence intensity and the coherence with the velocity. The coherence between the signals allowed identification of the crucial positions for measurement of the integral length scale and turbulence intensity for prediction of the time average surface heat flux. The frequencies corresponded to the most energetic frequencies of the turbulence, indicating the importance of the penetration of the turbulent eddies from the freestream through the boundary layer to the surface. The distance from the surface was slightly less than the local value of length scale, indicating the crucial role of the turbulence in augmenting the heat flux. The resulting predictions of the analytical model matched well with the measured heat transfer augmentation.


Author(s):  
Joshua L. Nickerson ◽  
Martin Cerza ◽  
Sonia M. F. Garcia

The solution of the heat conduction equation in the liquid layer beneath a moving bubble’s base and the resulting local heat transfer coefficient are presented. An analytical model was constructed using separation of variables to solve the heat conduction equation for the thermal profile in the liquid film beneath the base of a bubble moving through a microchannel at a given velocity. Differentiating the resulting liquid thermal profile and applying the standard definition for the local heat transfer coefficient resulted in a solution for local heat transfer coefficient as a function of bubble length. Analysis included varying pertinent parameters such as film thickness beneath the bubble base, wall heat flux, and superheated temperature in the microchannel. Water and FC-72 were analyzed as prospective coolant fluids. Analytical data revealed that as the superheated temperature in the microchannel increases, local heat transfer coefficients increase and arrive at a higher steady-state value. Increasing wall heat flux achieved the same result, while increasing film thickness resulted in lower heat transfer coefficients. The model indicated that water had superior performance as a coolant, provided the dielectric fluid (FC-72) is not mandated.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
A. C. Nix ◽  
T. E. Diller

Detailed time records of velocity and heat flux were measured near the stagnation point of a cylinder in low-speed airflow. The freestream turbulence was controlled using five different grids positioned to match the characteristics from previous heat flux experiments at NASA Glenn using the same wind tunnel. A hot wire was used to measure the cross-flow velocity at a range of positions in front of the stagnation point. This gave the average velocity and fluctuating component including the turbulence intensity and integral length scale. The heat flux was measured with a heat flux microsensor located on the stagnation line underneath the hot-wire probe. This gave the average heat flux and the fluctuating component simultaneous with the velocity signal, including the heat flux turbulence intensity and the coherence with the velocity. The coherence between the signals allowed identification of the crucial positions for measurement of the integral length scale and turbulence intensity for prediction of the time-averaged surface heat flux. The frequencies corresponded to the most energetic frequencies of the turbulence, indicating the importance of the penetration of the turbulent eddies from the freestream through the boundary layer to the surface. The distance from the surface was slightly less than the local value of length scale, indicating the crucial role of the turbulence in augmenting the heat flux. The resulting predictions of the analytical model matched well with the measured heat transfer augmentation.


Author(s):  
Siyoung Jeong ◽  
Eunsang Cho ◽  
Hark-koo Kim

Evaporation heat transfer and pressure drop characteristics of carbon dioxide were investigated in a multi-channel micro tube. The aluminum tube has 3 square channels with a hydraulic diameter of 2mm, a wall thickness of 1.5mm, and a length of 5m. The tube was heated directly by electric current. Experiments were conducted at heat fluxes ranging 4–16 kW/m2, mass fluxes from 150 to 750 kg/m2s, evaporative temperature from 0 to 10°C, and qualities from 0 to superheated state. The heat transfer coefficient measured was in the range of 6–15kW/m2K, and the pressure drop was 3–23kPa/m. For the qualities lower than 0.5, the heat transfer coefficient was found to increase with the quality, which is assumed to be the effect of convective boiling. For the qualities higher than 0.6, sudden drop in heat transfer coefficients was sometimes observed due to local dry-out. It was found that dry-out occurred at lower quality if mass flux was smaller. The average heat transfer coefficient was found to increase with increasing heat flux, mass flux, and evaporation temperature, of which the effect of heat flux was the greatest. At given experimental conditions the pressure drop increased almost linearly with increasing quality. The total pressure drop was found to increase with increasing heat flux, mass flux, and evaporation temperature, of which the effect of mass flux was the greatest. From the experimental results simple correlations for heat transfer coefficients and pressure drop were developed.


Author(s):  
Katharine L. Harrison ◽  
John R. Dorrington ◽  
Jason E. Dees ◽  
David G. Bogard ◽  
Ronald S. Bunker

Film cooling adiabatic effectiveness and heat transfer coefficients for cylindrical holes embedded in a 1d transverse trench on the suction side of a simulated turbine vane were investigated to determine the net heat flux reduction. For reference, measurements were also conducted with standard inclined, cylindrical holes. Heat transfer coefficients were determined with and without upstream heating to isolate the hydrodynamic effects of the trench and to investigate the effects of the thermal approach boundary layer. Also the effects of a tripped versus an un-tripped boundary layer were explored. For both the cylindrical holes and the trench, heat transfer augmentation was much greater with no tripping of the approach flow. A further increase in heat transfer augmentation was caused by use of upstream heating, with as much as a 150% augmentation with the trench. With a tripped approach flow the heat transfer augmentation was much less. The net heat flux reduction for the trench was found to be significantly higher than for the row of cylindrical holes.


Author(s):  
Eiji Hihara ◽  
Chaobin Dang

In this study, boiling heat transfer coefficients of carbon dioxide in horizontally located smooth tubes were experimentally investigated. The inner diameter of heat transfer tubes was 1, 2, 4, and 6 mm. Experiments were conducted at evaporating temperature of 5 and 15 °C, heat fluxes from 4.5 to 36 kW/m2, and mass fluxes from 360 to 1440 kg/m2s. The heat transfer coefficients in the pre-dryout region and post-dryout region were investigated, as well as the dryout quality. Due to the small viscosity and surface tension of CO2, the dryout occurs at a small quality from 0.4 to 0.7. The inception quality decreases with the increase of mass flux, and is affected by the heat flux and tube diameter; the effects of heat flux on the heat transfer coefficient are much significant in the pre-dryout region, which is related with the activation of nucleate boiling. On the contrary, the effects of mass flux are relatively low due to the low two-phase density ratio near the critical point. In addition, this tendency becomes more significant when the small tube is tested; In the post-dryout region, mass velocity is the dominating factor on heat transfer coefficient. At small mass flux, the heat transfer coefficient decreases with the increase of quality, while at large mass flux such as 1440kg/m2s, the heat transfer coefficient turns to increasing with the quality. By increasing the evaporating temperature, the pre-dryout heat transfer coefficient increases, while the dryout inception quality and post-dryout heat transfer coefficient are not affected greatly by the evaporating temperature.


Sign in / Sign up

Export Citation Format

Share Document