Evaluation of Porous Ni-YSZ Cermets With Ni Content of 0–30 Vol. % as Insulating Substrates for Segmented-in-Series Tubular Solid Oxide Fuel Cells

Author(s):  
Zhenwei Wang ◽  
Masashi Mori ◽  
Takanori Itoh

Nickel was added to a substrate composed of porous Y2O3-stabilized ZrO2 (YSZ) in order to minimize anode damage during redox cycling in segmented-in-series tubular solid oxide fuel cells (SOFCs) with YSZ electrolytes. In this study, the electrical insulating and thermal properties of these materials were evaluated for their suitability as substrates in the tubular SOFCs. When the Ni content was ≤20 vol. %, the porous cermets showed an electrical resistance of ≤67 Ω cm at 900 °C, indicating that the theoretical open circuit voltage for the tubular SOFCs could be achieved. However, the cermet with 20 vol. % Ni was destroyed during the first heating cycle in air because of large isothermal expansion. However, no obvious cracks were observed for cermets with ≤10 vol. % Ni. From the viewpoint of thermogravimetric measurement, this suggests that there are two redox mechanisms for Ni particles in the substrate. They were reduced/oxidized by both the gases and the oxide-ions passing through the YSZ framework. Based on the insulating and thermal properties of the substrate, the optimal composition was found to be approximately 10 vol. % Ni.

2012 ◽  
Vol 28 ◽  
pp. 153-161 ◽  
Author(s):  
K. Fujita ◽  
T. Seyama ◽  
T. Sobue ◽  
Y. Matsuzaki

2008 ◽  
Vol 5 (6) ◽  
pp. 568-573 ◽  
Author(s):  
Yaohui Zhang ◽  
Jiang Liu ◽  
Juan Yin ◽  
Wensheng Yuan ◽  
Jing Sui

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2277
Author(s):  
Zhengwen Tu ◽  
Yuanyuan Tian ◽  
Mingyang Liu ◽  
Bin Jin ◽  
Muhammad Akbar ◽  
...  

Recently, appreciable ionic conduction has been frequently observed in multifunctional semiconductors, pointing out an unconventional way to develop electrolytes for solid oxide fuel cells (SOFCs). Among them, ZnO and Li-doped ZnO (LZO) have shown great potential. In this study, to further improve the electrolyte capability of LZO, a typical ionic conductor Sm0.2Ce0.8O1.9 (SDC) is introduced to form semiconductor-ionic composites with LZO. The designed LZO-SDC composites with various mass ratios are successfully demonstrated in SOFCs at low operating temperatures, exhibiting a peak power density of 713 mW cm−2 and high open circuit voltages (OCVs) of 1.04 V at 550 °C by the best-performing sample 5LZO-5SDC, which is superior to that of simplex LZO electrolyte SOFC. Our electrochemical and electrical analysis reveals that the composite samples have attained enhanced ionic conduction as compared to pure LZO and SDC, reaching a remarkable ionic conductivity of 0.16 S cm−1 at 550 °C, and shows hybrid H+/O2− conducting capability with predominant H+ conduction. Further investigation in terms of interface inspection manifests that oxygen vacancies are enriched at the hetero-interface between LZO and SDC, which gives rise to the high ionic conductivity of 5LZO-5SDC. Our study thus suggests the tremendous potentials of semiconductor ionic materials and indicates an effective way to develop fast ionic transport in electrolytes for low-temperature SOFCs.


Author(s):  
Hanno Stagge ◽  
Lars Doerrer ◽  
Ralf Benger ◽  
Beck Hans-Peter

Fuel cells consist of single cells that are connected in series to form a stack. This increases output voltage and therefore decreases current-dependent power losses, but the electric current of the stack has to flow through each single cell. In case of an increase of resistance or a failure of just one single cell the whole stack is affected. The failure tolerance of a parallel connection is higher. The serial and parallel connection of single solid oxide fuel cells (SOFC) is compared under the aspects of failure probability, power drop and stress on the single cells. With both a highly linearized and a complex SOFC model simulations have been accomplished of the connection of two single cells in parallel and in serial configuration. Additionally different connection concepts of 16 single cells were examined. Finally, an outlook on different other source or storage technologies for electric energy like batteries and photovoltaic cells is given.


2020 ◽  
pp. 116580
Author(s):  
Jung Hoon Park ◽  
Jong-Ho Lee ◽  
Kyung Joong Yoon ◽  
Hyoungchul Kim ◽  
Ho-Il Ji ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 679-682
Author(s):  
Tak-Hyoung Lim ◽  
U. J. Yun ◽  
Jong-Won Lee ◽  
Seung-Bok Lee ◽  
Seok-Joo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document