scholarly journals Experimental Investigation of Turbulence Diffusion—A Factor in Transportation of Sediment in Open-Channel Flow

1945 ◽  
Vol 12 (2) ◽  
pp. A91-A100
Author(s):  
E. R. Van Driest

Abstract Turbulence diffusion in open-channel flow was investigated experimentally by photographing the spread of globules formed by the injection of an immiscible fluid into water. The mean-square transverse deviations of the globules at various distances downstream from the source were computed and analyzed in an effort to determine the shape of the velocity-correlation curve. Comparison was made between two types of curve which fitted the deviation data, one corresponding to a power-correlation law and the other to an exponential-correlation law.

Author(s):  
P. J. Wicks

AbstractIn this paper, a model for lateral dispersion in open-channel flow is studied involving a diffusion equation which has a nonlinear term describing the effect of buoyancy. The model is used to investigate the interaction of two buoyant pollutant plumes. An approximate analytic technique involving Hermite polynomials is applied to the resulting PDEs to reduce them to a system of ODEs for the centroids and widths of the two plumes. The ODEs are then solved numerically. A rich variety of behaviour occurs depending on the relative positions, widths and strengths of the initial discharges. It is found that for two plumes of equal strength and width discharged side-by-side, the plumes move apart and the rate of spreading is inhibited by their interaction, whereas when one plume is initially much wider than the other, both plumes tend to drift to the side of the narrower plume. Finally, the PDEs are solved numerically for two sets of initial conditions and a comparison is made with the ODE solutions. Agreement is found to be good.


2018 ◽  
Vol 40 ◽  
pp. 05039
Author(s):  
Priscilla Williams ◽  
Vesselina Roussinova ◽  
Ram Balachandar

This paper focuses on the turbulence structure in a non-uniform, gradually varied, sub-critical open channel flow (OCF) on a rough bed. The flow field is analysed under accelerating, near-uniform and decelerating conditions. Information for the flow and turbulence parameters was obtained at multiple sections and planes using two different techniques: two-component laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Different outer region velocity scaling methods were explored for evaluation of the local friction velocity. Analysis of the mean velocity profiles showed that the overlap layer exists for all flow cases. The outer layer of the decelerated velocity profile was strongly affected by the pressure gradient, where a large wake was noted. Due to the prevailing nature of the experimental setup it was found that the time-averaged flow quantities do not attained equilibrium conditions and the flow is spatially heterogeneous. The roughness generally increases the friction velocity and its effect was stronger than the effect of the pressure gradient. It was found that for the decelerated flow section over a rough bed, the mean flow and turbulence intensities were affected throughout the flow depth. The flow features presented in this study can be used to develop a model for simulating flow over a block ramp. The effect of the non-uniformity and roughness on turbulence intensities and Reynolds shear stresses was further investigated.


Author(s):  
Hélio Augusto Goulart Diniz ◽  
Lúcio Sant'Anna Purri Miranda ◽  
Ivo Zatti Lima Meyer ◽  
Luiz Henrique Ramos de Oliveira ◽  
Jorge Luis Zegarra Tarqui

2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Martin Agelinchaab ◽  
Mark F. Tachie

A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.


1990 ◽  
Vol 17 (6) ◽  
pp. 1015-1021 ◽  
Author(s):  
N. Rajaratnam ◽  
C. Katopodis ◽  
M. A. Fairbairn

This paper presents the results of a laboratory study of the hydraulic performance of fish weirs and fish baffles used by Alberta Transportation for improving the fish-passing capacity of culverts. It was found that if the longitudinal spacing of the weirs is limited to 0.6 and 1.2 times the diameter of the culvert, their performance is comparable to that of the corresponding weir and slotted-weir baffle systems, with regard to the depth of pool between the baffles as well as the barrier velocity. On the other hand, the fish baffles did not perform as well as the fish weirs under the conditions tested. Key words: culverts, fishways, baffles, turbulent flow, hydraulics, open-channel flow.


Sign in / Sign up

Export Citation Format

Share Document