PIV Study of Separated and Reattached Open Channel Flow Over Surface Mounted Blocks

2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Martin Agelinchaab ◽  
Mark F. Tachie

A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.

Author(s):  
B. Nyantekyi-Kwakye ◽  
E. E. Essel ◽  
S. Clark ◽  
M. F. Tachie

An experimental study was undertaken to investigate the effects of bed roughness on the turbulence characteristics of shallow open channel flows. The measurements were performed in a recirculating open channel flow over a reference smooth bed and a three-dimensional rough bed (36-grit sandpaper). The velocity measurements were conducted using a high resolution particle image velocimetry (PIV) system. The Reynolds number based on the depth of flow (h) and freestream velocity (Ue) varied from 21000 to 30000 and the Froude number ranged from 0.46 to 0.65. Two smooth bed experiments were conducted to investigate the effect of Reynolds number on the open channel flow. The mean velocities and Reynolds stresses for the two smooth cases were observed to be weakly dependent on Reynolds number. The effect of bed roughness was observed to penetrate into the outer layer of the boundary layer. The results show that bed roughness significantly increased the skin friction coefficient, wake parameter, boundary layer parameters, as well as the mean velocity, Reynolds stresses and the energy budget terms. A two-point correlation analysis showed that the coherent structures were also significantly modified by bed roughness.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2018 ◽  
Vol 40 ◽  
pp. 05039
Author(s):  
Priscilla Williams ◽  
Vesselina Roussinova ◽  
Ram Balachandar

This paper focuses on the turbulence structure in a non-uniform, gradually varied, sub-critical open channel flow (OCF) on a rough bed. The flow field is analysed under accelerating, near-uniform and decelerating conditions. Information for the flow and turbulence parameters was obtained at multiple sections and planes using two different techniques: two-component laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Different outer region velocity scaling methods were explored for evaluation of the local friction velocity. Analysis of the mean velocity profiles showed that the overlap layer exists for all flow cases. The outer layer of the decelerated velocity profile was strongly affected by the pressure gradient, where a large wake was noted. Due to the prevailing nature of the experimental setup it was found that the time-averaged flow quantities do not attained equilibrium conditions and the flow is spatially heterogeneous. The roughness generally increases the friction velocity and its effect was stronger than the effect of the pressure gradient. It was found that for the decelerated flow section over a rough bed, the mean flow and turbulence intensities were affected throughout the flow depth. The flow features presented in this study can be used to develop a model for simulating flow over a block ramp. The effect of the non-uniformity and roughness on turbulence intensities and Reynolds shear stresses was further investigated.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


2000 ◽  
Vol 422 ◽  
pp. 319-346 ◽  
Author(s):  
DAVID B. DE GRAAFF ◽  
JOHN K. EATON

Despite extensive study, there remain significant questions about the Reynolds-number scaling of the zero-pressure-gradient flat-plate turbulent boundary layer. While the mean flow is generally accepted to follow the law of the wall, there is little consensus about the scaling of the Reynolds normal stresses, except that there are Reynolds-number effects even very close to the wall. Using a low-speed, high-Reynolds-number facility and a high-resolution laser-Doppler anemometer, we have measured Reynolds stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000. Profiles of u′2, v′2, and u′v′ show reasonably good collapse with Reynolds number: u′2 in a new scaling, and v′2 and u′v′ in classic inner scaling. The log law provides a reasonably accurate universal profile for the mean velocity in the inner region.


2007 ◽  
Vol 129 (11) ◽  
pp. 1372-1383 ◽  
Author(s):  
Kyoungsik Chang ◽  
George Constantinescu ◽  
Seung-O Park

The three-dimensional (3D) incompressible flow past an open cavity in a channel is predicted using the Spalart–Almaras (SA) and the shear-stress-transport model (SST) based versions of detached eddy simulation (DES). The flow upstream of the cavity is fully turbulent. In the baseline case the length to depth (L∕D) ratio of the cavity is 2 and the Reynolds number ReD=3360. Unsteady RANS (URANS) is performed to better estimate the performance of DES using the same code and meshes employed in DES. The capabilities of DES and URANS to predict the mean flow, velocity spectra, Reynolds stresses, and the temporal decay of the mass of a passive contaminant introduced instantaneously inside the cavity are assessed based on comparisons with results from a well resolved large eddy simulation (LES) simulation of the same flow conducted on a very fine mesh and with experimental data. It is found that the SA-DES simulation with turbulent fluctuations at the inlet gives the best overall predictions for the flow statistics and mass exchange coefficient characterizing the decay of scalar mass inside the cavity. The presence of inflow fluctuations in DES is found to break the large coherence of the vortices shed in the separated shear layer that are present in the simulations with steady inflow conditions and to generate a wider range of 3D eddies inside the cavity, similar to LES. The predictions of the mean velocity field from URANS and DES are similar. However, URANS predictions show poorer agreement with LES and experiment compared to DES for the turbulence quantities. Additionally, simulations with a higher Reynolds number (ReD=33,600) and with a larger length to depth ratio (L∕D=4) are conducted to study the changes in the flow and shear-layer characteristics, and their influence on the ejection of the passive contaminant from the cavity.


1967 ◽  
Vol 27 (4) ◽  
pp. 657-689 ◽  
Author(s):  
R. E. Kelly

In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.


Author(s):  
M. K. Shah ◽  
M. F. Tachie

The characteristics of an open channel turbulent flow over a forward facing step (FFS) are investigated in the present study. Two step heights, h = 6 and 9 mm, at Reynolds number, Reh, (based on the approach freestream velocity, U0, and step height, h) of 1900 and 2800 respectively were studied. Particle image velocimetry technique (PIV) was used to obtain detailed velocity measurements upstream of the FFS, in the reattachment region (x/h = 0, 1, 2) and in the redevelopment region (x/h = 4, 10, 15 and 50). The boundary layer integral parameters, mean velocity profiles and Reynolds stresses obtained in the reattachment and redevelopment region are used to document some of the salient features of the flow.


A set of model equations is given to describe the gross features of a statistically steady or 'slowly varying’ inhomogeneous field of turbulence and the mean velocity distribution. The equations are based on the idea that turbulence can be characterized by ‘densities’ which obey nonlinear diffusion equations. The diffusion equations contain terms to describe the convection by the mean flow, the amplification due to interaction with a mean velocity gradient, the dissipation due to the interaction of the turbulence with itself, and the dif­fusion also due to the self interaction. The equations are similar to a set proposed by Kolmo­gorov (1942). It is assumed that both an ‘energy density’ and a ‘vorticity density’ satisfy diffusion equations, and that the self diffusion is described by an eddy viscosity which is a function of the energy and vorticity densities; the eddy viscosity is also assumed to describe the diffu­sion of mean momentum by the turbulent fluctuations. It is shown that with simple and plausible assumptions about the nature of the interaction terms, the equations form a closed set. The appropriate boundary conditions at a solid wall and a turbulent interface, with and without entrainment, are discussed. It is shown that the dimensionless constants which appear in the equations can all be estimated by general arguments. The equations are then found to predict the von Kármán constant in the law of the wall with reasonable accuracy. An analytical solution is given for Couette flow, and the result of a numerical study of plane Poiseuille flow is described. The equations are also applied to free turbulent flows. It is shown that the model equations completely determine the structure of the similarity solutions, with the rate of spread, for instance, determined by the solution of a nonlinear eigenvalue problem. Numerical solutions have been obtained for the two-dimensional wake and jet. The agreement with experiment is good. The solutions have a sharp interface between turbulent and non-turbulent regions and the mean velocity in the turbulent part varies linearly with distance from the interface. The equations are applied qualitatively to the accelerating boundary layer in flow towards a line sink, and the decelerating boundary layer with zero skin friction. In the latter case, the equations predict that the mean velocity should vary near the wall like the 5/3 power of the distance. It is shown that viscosity can be incorporated formally into the model equations and that a structure can be given to the interface between turbulent and non-turbulent parts of the flow.


2007 ◽  
Vol 129 (8) ◽  
pp. 1058-1072 ◽  
Author(s):  
M. F. Tachie ◽  
K. K. Adane

A particle image velocimetry was used to study shallow open channel turbulent flow over d-type and k-type transverse ribs of square, circular, and semi-circular cross sections. The ratio of boundary layer thickness to depth of flow varied from 50% to 90%. The mean velocities and turbulent quantities were evaluated at the top plane of the ribs to characterize interaction between the cavities and overlying boundary layer. It was found that the overlying boundary layer interacts more strongly with k-type cavities than observed for d-type cavities. The profiles of the mean velocities and turbulent statistics were then spatially averaged over a pitch, and these profiles were used to study the effects of rib type and cross section on the flow field. The mean velocity gradients were found to be non-negligible across the boundary layer, and the implications of this observation for momentum transport, eddy viscosity, and mixing length distributions are discussed. The results show that the skin friction coefficient, Reynolds stresses and mixing length distributions are independent of rib cross section for d-type. For the k-type ribs, significant variations in skin friction coefficient values, mean flow, and turbulence fields are observed between square ribs and circular/semi-circular ribs.


Sign in / Sign up

Export Citation Format

Share Document