ANFIS Modeling of Human Welder's Response to Three-Dimensional Weld Pool Surface in GTAW

Author(s):  
YuKang Liu ◽  
WeiJie Zhang ◽  
YuMing Zhang

Understanding and modeling of the human welder's response to three-dimensional (3D) weld pool surface may help develop next generation intelligent welding machines and train welders faster. In this paper, human welder's adjustment on the welding current as a response to the 3D weld pool surface characterized by its width, length, and convexity is studied. An innovative vision system is used to real-time measure the specular 3D weld pool surface under strong arc in gas tungsten arc welding (GTAW). Experiments are designed to produce random changes in the welding speed resulting in fluctuations in the weld pool surface. Adaptive neuro-fuzzy inference system (ANFIS) is proposed to correlate the human welder's response to the 3D weld pool surface using three inputs including the weld pool width, length and convexity. The human welder's behavior is not only related to the 3D weld pool geometry but also relies on the welder's previous adjustment. In this sense, a four input ANFIS model adding the previous human welder's response as a model input is developed and compared with the fitted linear model. It is found that the proposed ANFIS model can derive a more accurate correlation between the human welder's responses and the weld pool geometry and help understand the nonlinear response of the human welder to 3D weld pool surfaces.

Author(s):  
C S Wu ◽  
L Dorn

A three-dimensional model is set up to predict the surface depression of a tungsten inert gas (TIG) weld pool in a full-penetration condition in order to find out the relation between pool depression and weld penetration. It solves pool surface depression, fluid flow and heat transfer simultaneously and determines the configuration of a weld pool surface based on the dynamic balance among arc pressure, pool gravity and surface tension at the deformed weld pool surface. In the numerical simulation, difficulties associated with the irregular shape of the deformed weld pool surface and the liquid/solid interface have been overcome by adopting a boundary-fitted non-orthogonal curvilinear coordinate system. A series of data about pool surface depression under different TIG welding conditions are obtained. The validity of the model is verified through TIG welding experiments.


2020 ◽  
Author(s):  
Jiankang Huang ◽  
LIU Guangyin ◽  
HE Jing ◽  
YU Shurong ◽  
LIU Shien ◽  
...  

Abstract In order to study the dynamic characteristics of the weld pool surface during the TIG welding process of the filler wire, an observation test platform for the study of the three-dimensional surface behavior evolution of the TIG weld pool based on the grid structure laser was used to observe the weld pool surface and obtain the reflection grid laser image. The three-dimensional surface evolution of the fixed-point TIG welding pool is accurately restored by the three-dimensional recovery algorithm of the weld pool surface, so as to obtain the three-dimensional surface morphology of the weld pool. The difference between the obtained weld pool height and the experimental results is very small, and the results are basically the same.


Author(s):  
R Kovacevic ◽  
Y M Zhang

The weld pool surface provides important information for understanding arc welding processes. In this study, a novel vision sensor is proposed to measure the three-dimensional shape of the free weld pool surface. A pulsed laser is projected on to the weld pool through a specific grid. Specular reflection from the pool surface is sensed using a high shutter speed camera. The three-dimensional weld pool surface shape is clearly shown by the specular reflection. To determine the shape of the pool surface, an image processing technology has been developed to extract the skeleton of the specular reflection from the acquired image. The imaging principle is analysed to determine the correlation between the reflection and the weld pool surface. If the weld pool surface is known, the corresponding specular reflection can be directly calculated using the imaging model which is derived based on the reflection law. However, no explicit models can be obtained to determine the weld pool surface using the reflection and sensor parameters. To solve this difficulty, an iterative algorithm is proposed. The weld pool surface can now be calculated in 1 second from the specular reflection of the weld pool surface. A higher calculation speed is currently being pursued.


Author(s):  
ZhenZhou Wang ◽  
YuMing Zhang ◽  
XiaoJi Ma

The reflection of projected laser lines may be used to determine the three-dimensional geometry of the reflecting weld pool surface. However, for gas metal arc welding (GMAW), the transfer of the droplets into the weld pool makes the weld pool surface highly dynamic and fluctuating. The position and geometry of the local reflecting surface, which intercepts and reflects the projected laser changes rapidly. As a result, the reflection rays change their trajectories rapidly. The contrast of laser reflection with the background is much reduced and methods are needed to extract laser reflection from low contrast images. To this end, an image quality measurement method is proposed based on the number of the edge points to determine if an image may be further processed. The image to be processed is then modeled as a superposition of the laser reflection and arc radiation background. Methods have been proposed to remove the uneven distribution of the arc radiation background from the image, such that a global threshold is possible to segment the laser reflection lines. The set of the laser line points are then clustered to form separate laser lines. These laser lines are then modeled and the parameters in the models are used to validate each modeled line. Processing results verified the effectiveness of the proposed methods/algorithms in providing laser lines from low contrast images that are formed by laser reflection from a high dynamic gas metal arc weld pool surface.


Sign in / Sign up

Export Citation Format

Share Document