surface depression
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guihua Xu ◽  
Zilin Chen

AbstractTo evaluate the role of corneal hysteresis (CH) as a risk factor for progressive ONH surface depression and RNFL thinning measured by confocal scanning laser ophthalmoscopy (CSLO) and spectral-domain optical coherence tomography (SD-OCT), respectively in glaucoma patients. Prospective study. A total of 146 eyes of 90 patients with glaucoma were recruited consecutively. The CH measurements were acquired at baseline and 4-months interval using the Ocular Response Analyzer (Reichert Instruments, Depew, NY). Eyes were imaged by CSLO (Heidelberg Retinal Tomograph [HRT]; Heidelberg Engineering, GmbH, Dossenheim, Germany) and SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec AG, Dublin, CA) at approximately 4-month intervals for measurement of ONH surface topography and RNFL thickness, respectively. Significant ONH surface depression and RNFL thinning were defined with reference to Topographic Change Analysis (TCA) with HRT and Guided Progression Analysis (GPA) with Cirrus HD-OCT, respectively. Multivariate cox proportional hazards models were used to investigate whether CH is a risk factor for ONH surface depression and RNFL progression after adjusting potential confounding factors. All patients with glaucoma were followed for an average of 6.76 years (range, 4.56–7.61 years). Sixty-five glaucomatous eyes (44.5%) of 49 patients showed ONH surface depression, 55 eyes (37.7%) of 43 patients had progressive RNFL thinning and 20 eyes (13.7%) of 17 patients had visual field progression. In the cox proportional hazards model, after adjusting baseline diastolic IOP, CCT, age, baseline disc area and baseline MD, baseline CH was significantly associated with ONH surface depression and visual field progression (HR = 0.71, P = 0.014 and HR = 0.54, P = 0.018, respectively), but not with RNFL thinning (HR = 1.03, P = 0.836). For each 1-mmHg decrease in baseline CH, the hazards for ONH surface depression increase by 29%, and the hazards for visual field progression increase by 46%. The CH measurements were significantly associated with risk of glaucoma progression. Eyes with a lower CH were significantly associated with an increased risk of ONH surface depression and visual field progression in glaucoma patients.


2021 ◽  
Author(s):  
Guihua Xu ◽  
Zilin Chen

Abstract Purpose: To evaluate the role of corneal hysteresis (CH) as a risk factor for progressive ONH surface depression and RNFL thinning measured by confocal scanning laser ophthalmoscopy (CSLO) and spectral-domain optical coherence tomography (SD-OCT), respectively in glaucoma patients.Design: Prospective study.Methods: A total of 146 eyes of 90 patients with glaucoma were recruited consecutively. The CH measurements were acquired at baseline and 4-months interval using the Ocular Response Analyzer (Reichert Instruments, Depew, NY). Eyes were imaged by CSLO (Heidelberg Retinal Tomograph [HRT]; Heidelberg Engineering, GmbH, Dossenheim, Germany) and SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec AG, Dublin, CA) at approximately 4-month intervals for measurement of ONH surface topography and RNFL thickness, respectively. Significant ONH surface depression and RNFL thinning were defined with reference to Topographic Change Analysis (TCA) with HRT and Guided Progression Analysis (GPA) with Cirrus HD-OCT, respectively. Multivariate cox proportional hazards models were used to investigate whether CH is a risk factor for ONH surface depression and RNFL progression after adjusting potential confounding factors. Results: All patients with glaucoma were followed for an average of 6.76 years (range, 4.56-7.61 years). Sixty-five glaucomatous eyes (44.5%) of 49 patients showed ONH surface depression, 55 eyes (37.7%) of 43 patients had progressive RNFL thinning and 20 eyes (13.7%) of 17 patients had visual field progression. In the cox proportional hazards model, after adjusting baseline diastolic IOP, CCT, age, baseline disc area and baseline MD, baseline CH was significantly associated with ONH surface depression and visual field progression (HR=0.71, P=0.014 and HR=0.54, P=0.018, respectively), but not with RNFL thinning (HR=1.03, P=0.836). For each 1-mmHg decrease in baseline CH, the hazards for ONH surface depression increase by 29%, and the hazards for visual field progression increase by 46%.Conclusions: The CH measurements were significantly associated with risk of glaucoma progression. Eyes with a lower CH were significantly associated with an increased risk of ONH surface depression and visual field progression in glaucoma patients.


Author(s):  
Mahmoud Zayed ◽  
Elzahry Farouk

Abstract Rack clogging can produce dramatic changes in channel hydraulics. Previous studies have investigated the hydraulics of trash racks for various parameters, but the methodology and the findings were not sufficiently refined. Free-surface depression has also been neglected so far. This study considers the rack blockages as impermeable and box-shaped accumulations (instead of considering their bar thicknesses or spacings) for the hydraulic conditions. Hence, flume experiments were performed to clarify the impact of the governing variables on the rack head loss and to examine the characteristics of free-surface depression (i.e. the length of free-surface depression and maximum depth of the depression) because of predefined blockage ratios. The results prove that the rack head loss and flow turbulence behind the rack mainly depend on the rack blockage and Froude number. However, the results for the blockage ratio ≤0.13 at the approach Froude number ≤0.12 has a minor effect on the resulting rack head loss; therefore, the effects are negligible. This study proposed design equations that determine the rack head loss, length of free-surface depression, and maximum depth of the depression behind the rack because of the box-shaped accumulation body that could be used by water engineers. Furthermore, the study improves upon the process understanding of rack blockages to avoid the potential hazards of open channel infrastructure.


Water SA ◽  
2020 ◽  
Vol 46 (3 July) ◽  
Author(s):  
Mohamed AM Abd Elbasit ◽  
Majed M Abu-Zreig ◽  
Chandra SP Ojha ◽  
Hiroshi Yasuda ◽  
Liu Gang

Depression storage capacity (DSC) models found in the literature were developed using statistical regression for relatively large soil surface roughness and slope values resulting in several fitting parameters. In this research, we developed and tested a conceptual model to estimate surface depression storage having small roughness values usually encountered in rainwater harvesting micro-catchments and bare soil in arid regions with only one fitting parameter. Laboratory impermeable surfaces of 30 x 30 cm2 were constructed with 4 sizes of gravel and mortar resulting in random roughness values ranging from 0.9 to 6.3 mm. A series of laboratory experiments were conducted under 9 slope values using simulated rain. Depression storage for each combination of relative roughness and slope was estimated by the mass balance approach.  Analysis of experimental results indicated that the developed linear model between DSC and the square root of the ratio of random roughness (RR) to slope was significant at p < 0.001 and coefficient of determination R2 = 0.90. The developed model predicted depression storage of small relief at higher accuracy compared to other models found in the literature. However, the model is based on small-scale laboratory plots and further testing in the field will provide more insight for practical applications.


2020 ◽  
Vol 56 (7) ◽  
Author(s):  
Adnan Rajib ◽  
Heather E. Golden ◽  
Charles R. Lane ◽  
Qiusheng Wu

2019 ◽  
Vol 26 (6) ◽  
pp. 063511 ◽  
Author(s):  
Lin Xiong ◽  
Zhan Shu ◽  
Qinghua Huang ◽  
Qiang Chen ◽  
Xiaolong Deng ◽  
...  

2019 ◽  
Author(s):  
Mohamed A. M. Abd Elbasit ◽  
Chandra S. P. Ojha ◽  
Majed M. Abu-Zerig ◽  
Hiroshi Yasuda ◽  
Liu Gang ◽  
...  

Abstract. Depression storage models found in the literature were developed using statistical regression for relatively large soil surface roughness and slope values resulting in several fitting parameters. In this research, we developed and tested a conceptual model to estimate surface depression storage having small roughness values usually encountered in rainwater harvesting microcatchments in arid regions with only one fitting parameter. Laboratory impermeable surfaces of 30 × 30 cm2 were constructed with four sizes of gravel and mortar resulting in random roughness values ranged from 0.9 to 6.3 mm. A series of laboratory experiments were conducted under 9 slope values using simulated rain. Depression storage for each combination of relative roughness and slope were estimated by mass balance approach. Analysis of experimental results indicated that the developed linear model between DSC and the square root of the ration of random roughness (RR) to slope was significant at probability value of 0.001 and coefficient of determination R2 = 0.90. The developed model predicted depression storage of small relief at higher accuracy compared to other models found in the literature.


Sign in / Sign up

Export Citation Format

Share Document