On the Identities for Elastostatic Fundamental Solution and Nonuniqueness of the Traction BIE Solution for Multiconnected Domains

2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Y. J. Liu ◽  
W. Ye ◽  
Y. Deng

In this paper, the four integral identities satisfied by the fundamental solution for elastostatic problems are reviewed and slightly different forms of the third and fourth identities are presented. Two new identities, namely the fifth and sixth identities, are derived. These integral identities can be used to develop weakly singular and nonsingular forms of the boundary integral equations (BIEs) for elastostatic problems. They can also be employed to show the nonuniqueness of the solution of the traction (hypersingular) BIE for an elastic body on a multiconnected domain. This nonuniqueness is shown in a general setting in this paper. It is shown that the displacement (singular) BIE does not allow any rigid-body displacement terms, while the traction BIE can have arbitrary rigid-body translation and rotation terms, in the BIE solutions on the edge of a hole or surface of a void. Therefore, the displacement solution from the traction BIE is not unique. A remedy to this nonuniqueness solution problem with the traction BIE is proposed by adopting a dual BIE formulation for problems with multiconnected domains. A few numerical examples using the 2D elastostatic boundary element method for domains with holes are presented to demonstrate the uniqueness properties of the displacement, traction and the dual BIE solutions for multiconnected domain problems.

2020 ◽  
Vol 36 (6) ◽  
pp. 749-761
Author(s):  
Y. -Y. Ko

ABSTRACTWhen the Symmetric Galerkin boundary element method (SGBEM) based on full-space elastostatic fundamental solutions is used to solve Neumann problems, the displacement solution cannot be uniquely determined because of the inevitable rigid-body-motion terms involved. Several methods that have been used to remove the non-uniqueness, including additional point support, eigen decomposition, regularization of a singular system and modified boundary integral equations, were introduced to amend SGBEM, and were verified to eliminate the rigid body motions in the solutions of full-space exterior Neumann problems. Because half-space problems are common in geotechnical engineering practice and they are usually Neumann problems, typical half-space problems were also analyzed using the amended SGBEM with a truncated free surface mesh. However, various levels of errors showed for all the methods of removing non-uniqueness investigated. Among them, the modified boundary integral equations based on the Fredholm’s theory is relatively preferable for its accurate results inside and near the loaded area, especially where the deformation varies significantly.


Author(s):  
Vladimir Zozulya

In this article the methodology for divergent integral regularization developed in [8] is applied for regularization of the weakly singular and hypersingular integrals, which arise when the boundary integral equations (BIE) methods are used to solve problems in fracture mechanics. The approach is based on the theory of distribution and the application of the Green theorem. The weakly singular and hypersingular integrals over arbitrary convex polygon have been transformed to the regular contour integrals that can be easily calculated analytically or numerically.


2003 ◽  
Vol 44 (3) ◽  
pp. 431-446
Author(s):  
E. Argyropoulos ◽  
D. Gintides ◽  
K. Kiriaki

AbstractIn this work the modified Green's function technique for an exterior Dirichlet and Neumann problem in linear elasticity is investigated. We introduce a modification of the fundamental solution in order to remove the lack of uniqueness for the solution of the boundary integral equations describing the problems, and to simultaneously minimise their condition number. In view of this procedure the cases of the sphere and perturbations of the sphere are examined. Numerical results that demonstrate the effect of increasing the number of coefficients in the modification on the optimal condition number are also presented.


Author(s):  
Carsten Carstensen ◽  
Ernst P. Stephan

AbstractIn this paper we present an adaptive boundary-element method for a transmission prob-lem for the Laplacian in a two-dimensional Lipschitz domain. We are concerned with an equivalent system of boundary-integral equations of the first kind (on the transmission boundary) involving weakly-singular, singular and hypersingular integral operators. For the h-version boundary-element (Galerkin) discretization we derive an a posteriori error estimate which guarantees a given bound for the error in the energy norm (up to a multiplicative constant). Then, following Eriksson and Johnson this yields an adaptive algorithm steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically good triangulations and are efficient.


Sign in / Sign up

Export Citation Format

Share Document