Indirect Solution of Inequality Constrained and Singular Optimal Control Problems Via a Simple Continuation Method

Author(s):  
Brian C. Fabien

This paper develops a simple continuation method for the approximate solution of optimal control problems. The class of optimal control problems considered include (i) problems with bounded controls, (ii) problems with state variable inequality constraints (SVIC), and (iii) singular control problems. The method used here is based on transforming the state variable inequality constraints into equality constraints using nonnegative slack variables. The resultant equality constraints are satisfied approximately using a quadratic loss penalty function. Similarly, singular control problems are made nonsingular using a quadratic loss penalty function based on the control. The solution of the original problem is obtained by solving the transformed problem with a sequence of penalty weights that tends to zero. The penalty weight is treated as the continuation parameter. The paper shows that the transformed problem yields necessary conditions for a minimum that can be written as a boundary value problem involving index-1 differential–algebraic equations (BVP-DAE). The BVP-DAE includes the complementarity conditions associated with the inequality constraints. It is also shown that the necessary conditions for optimality of the original problem and the transformed problem differ by a term that depends linearly on the algebraic variables in the DAE. Numerical examples are presented to illustrate the efficacy of the proposed technique.

Author(s):  
Brian C. Fabien

This paper develops a simple continuation method for the approximate solution of optimal control problems with pure state variable inequality constraints. The method is based on transforming the inequality constraints into equality constraints using nonnegative slack variables. The resultant equality constraints are satisfied approximately using a quadratic loss penalty function. The solution of the original problem is obtained by solving the transformed problem with a sequence of penalty weights that tends to zero. The penalty weight is treated as the continuation parameter. The necessary conditions for a minimum are written as a boundary value problem involving index-1 differential-algebraic equations (BVP-DAE). The BVP-DAE include the complementarity conditions associated with the inequality constraints. The paper shows that the necessary conditions for optimality of the original problem and the transformed problems are remarkably similar. In particular, the BVP-DAE for each problem differ by a linear term related to the Lagrange multipliers associated with the state variable inequality constraints. Numerical examples are presented to illustrate the efficacy of the proposed technique. Specifically, the paper presents results for; (1) the optimal control of a simplified model of a gantry crane system, (2) the optimal control of a rigid body moving in the vertical plane, and (3) the trajectory optimization of a planar two-link robot. All problems include pure state variable inequality constraints.


1973 ◽  
Vol 95 (4) ◽  
pp. 380-389 ◽  
Author(s):  
K. Martensson

A new approach to the numerical solution of optimal control problems with state-variable inequality constraints is presented. It is shown that the concept of constraining hyperplanes may be used to approximate the original problem with a problem where the constraints are of a mixed state-control variable type. The efficiency and the accuracy of the combination of constraining hyperplanes and a second-order differential dynamic programming algorithm are investigated on problems of different complexity, and comparisons are made with the slack-variable and the penalty-function techniques.


1963 ◽  
Vol 3 (4) ◽  
pp. 449-453
Author(s):  
M. A. Hanson

Certain optimization problems involving inequality constraints, known as optimal control problems have been extensively studied during recent years especially in relation to the calculation of optimal rocket thrusts and trajectories. A summary of these works is given by Berkovitz [1] who also establishes necessary conditions for the existence of solutions for a wide class of such problems.


2022 ◽  
pp. 107754632110593
Author(s):  
Mohammad Hossein Heydari ◽  
Mohsen Razzaghi ◽  
Zakieh Avazzadeh

In this study, the orthonormal piecewise Bernoulli functions are generated as a new kind of basis functions. An explicit matrix related to fractional integration of these functions is obtained. An efficient direct method is developed to solve a novel set of optimal control problems defined using a fractional integro-differential equation. The presented technique is based on the expressed basis functions and their fractional integral matrix together with the Gauss–Legendre integration method and the Lagrange multipliers algorithm. This approach converts the original problem into a mathematical programming one. Three examples are investigated numerically to verify the capability and reliability of the approach.


1974 ◽  
Vol 96 (1) ◽  
pp. 19-24
Author(s):  
P. J. Starr

Dynamic Path Synthesis refers to a class of linkage synthesis problems in which constraint paths between specified positions are determined in such a way as to optimize some measure of the resulting dynamic behavior. These problems can be transformed into nonlinear optimal control problems which are generally non-autonomous. The physical nature of the system allows general comments to be made regarding uniqueness, controllability, and singular control. The ideas are developed in the context of a two-link device yielding a fourth order non-linear control problem, for which a numerical example is presented.


2020 ◽  
Vol 37 (3) ◽  
pp. 1021-1047
Author(s):  
Roberto Andreani ◽  
Valeriano Antunes de Oliveira ◽  
Jamielli Tomaz Pereira ◽  
Geraldo Nunes Silva

Abstract Necessary optimality conditions for optimal control problems with mixed state-control equality constraints are obtained. The necessary conditions are given in the form of a weak maximum principle and are obtained under (i) a new regularity condition for problems with mixed linear equality constraints and (ii) a constant rank type condition for the general non-linear case. Some instances of problems with equality and inequality constraints are also covered. Illustrative examples are presented.


Sign in / Sign up

Export Citation Format

Share Document