Effect of Clamping Load on the Performance of Proton Exchange Membrane Fuel Cell Stack and Its Optimization Design: A Review of Modeling and Experimental Research

2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Wei Zhang ◽  
Cheng-wei Wu

When individual proton exchange membrane fuel cells (PEMFCs) are assembled together to form a stack and provide energy for practical applications, an appropriate clamping load is usually required to render the stack high efficiency, high reliability, and excellent durability. From both modeling and experimental aspects, this article first highlights the effect of clamping load on the electron transfer, mass (water and reactant gases) transfer, and heat transfer in a PEMFC stack and then puts the attentions on the optimization design of clamping load with emphases on the optimal clamping load and the homogenous distribution of clamping load. This summary may deepen our understanding of the assembly of a PEMFC stack and provide referential information for the designer and manufacturer.

Author(s):  
M. Bagnoli ◽  
A. De Pascale

The use of fuel cell systems for distributed generation represents an interesting option due to the intrinsic high efficiency and the potential to reduce the environmental impact of power supply in comparison with thermoelectric plants. In this paper the study of a cogenerative energy system based on a Proton Exchange Membrane fuel cell stack, that should satisfy a small electric utility, is reported; the capability of this cogenerative system to supply electrical and thermal power demand of a civil user has been investigated. In this research the electric efficiency has been calculated as net electric power on chemical power given to the system and the thermal efficiency as thermal power given to user on chemical power in input. Moreover, an energy saving index has been introduced to assess the cogenerative performance of this energy system. The investigation has been developed by experimenting an existing stack of fuel cell and studying its behaviour with a variable power demand. In particular, all the input and output mass flows have been evaluated to have parameters through which the operation of the whole cogenerative system, made by fuel cell stack and all the auxiliaries like compressor and pumps, could be simulated.


Author(s):  
Frano Barbir ◽  
Haluk Gorgun ◽  
Xinting Wang

Pressure drop on the cathode side of a PEM (Proton Exchange Membrane) fuel cell stack has been studied and used as a diagnostic tool. Since the Reynolds number at the beginning of the flow field channel was <250, the flow through the channel is laminar, and the relationship between the pressure drop and the flow rate is linear. Some departure from linearity was observed when water was either introduced in the stack or produced inside the stack in the electrochemical reaction. By monitoring the pressure drop in conjunction with the cell resistance in an operational fuel cell stack, it was possible to diagnose either flooding or drying conditions inside the stack.


2021 ◽  
Vol 488 ◽  
pp. 229419
Author(s):  
Qianqian Wang ◽  
Fumin Tang ◽  
Bing Li ◽  
Haifeng Dai ◽  
Jim P. Zheng ◽  
...  

2018 ◽  
Vol 43 (7) ◽  
pp. 2605-2614 ◽  
Author(s):  
Kailin Fu ◽  
Tian Tian ◽  
Yanan Chen ◽  
Shang Li ◽  
Chao Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document