Experimental Investigation of Enhanced Heat Transfer and Pressure Drop in a Solar Air Heater Duct With Discretized Broken V-Rib Roughness

2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Anil Kumar Patil ◽  
J. S. Saini ◽  
Krishna Kumar

The present study examines the augmentation in heat transfer and friction in a flow through solar air heater duct with discretized broken V-rib roughness. The experimental outcomes pertaining to Reynolds number from 3000 to 17,000, relative gap position (s′/s) from 0.2 to 0.8, relative staggered rib position (p′/p) from 0.2 to 0.8 have been presented and discussed. Discretized broken V-rib roughness brought out considerable enhancement in heat transfer rates over V-rib roughness and smooth duct. Effective efficiency of discretized broken V-rib roughened solar air heater is estimated and geometrical parameters of roughness are optimized with regard to temperature rise parameter and insolation.

Green ◽  
2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Anil K. Patil ◽  
J. S. Saini ◽  
K. Kumar

AbstractApplication of artificial roughness on underside of absorber surface has been found to be effective technique to improve thermo hydraulic performance of solar air heaters. In progression to the previous researches, the present study discloses the effect of broken V-rib roughness combined with staggered ribs on heat transfer and friction in a flow through artificially roughened solar air heater duct. The experimentations were performed to collect the data on heat transfer and friction by varying the Reynolds number (Re) between 3000 and 17,000, relative gap position (


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Anil Singh Yadav ◽  
J. L. Bhagoria

Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e=14.29) remains constant. The relative roughness height,e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.


Author(s):  
Mumtaz Hussain Qureshi ◽  
M. Shakaib

Computational Fluid Dynamics (CFD) study is conducted to determine turbulent fluid flow and temperature profiles in rectangular ribbed channels of solar air heater. The results show significant effect of Reynolds number and ribs height and pitch on turbulence and heat transfer rates. When heat flux is defined at the bottom wall, the temperature values increase rapidly near the ribs due to stagnant zones. The heat transfer coefficients are lower at these locations. When heat flux is specified at the top wall, the variation in heat transfer coefficient is relatively smooth. From the research work, the channel containing ribs of 3mm and pitch 40mm are determined suitable due to higher heat transfer rates.


2016 ◽  
Vol 34 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Suvanjan Bhattacharyya ◽  
Himadri Chattopadhyay ◽  
Satyaki Bandyopadhyay ◽  
Sourodeep Roy ◽  
Anirban Pal ◽  
...  

Author(s):  
Sheetal Kumar Jain ◽  
Ghanshyam Das Agrawal ◽  
Rohit Misra

Abstract In the present research, the thermohydraulic performance of a solar air heater having artificial roughness in the form of arc-shaped ribs with multiple gaps has been investigated experimentally and compared with that of a solar air heater having smooth absorber plate. The performance has been investigated in terms of enhancement in the Nusselt number and friction factor. Results of the present work have also been compared with previously published work. Reynolds number and arc angle (α) were varied from 3000 to 18,000 and 30 deg to 75 deg, respectively. Present roughness results in a higher rate of heat transfer from the absorber surface to air, but it also imposes a penalty in terms of the increased friction factor. Maximum enhancement in Nusselt number, friction factor, and thermohydraulic performance parameter for the roughened absorber surface is found to be 3.74, 2.69, and 2.75 times that of the smooth plate, respectively. Correlations of heat transfer and friction factor for proposed roughness have also been developed.


2018 ◽  
Vol 127 ◽  
pp. 213-229 ◽  
Author(s):  
Ganesh Kumar Poongavanam ◽  
Karthik Panchabikesan ◽  
Anto Joseph Deeyoko Leo ◽  
Velraj Ramalingam

Sign in / Sign up

Export Citation Format

Share Document