laminar flow conditions
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Javier Abello ◽  
Yvette Y Yien ◽  
Amber N Stratman

Endothelial cells (ECs) are the primary cellular constituent of blood vessels that are in direct contact with hemodynamic forces over the course of a lifetime. Throughout the body, vessels experience different types of blood flow patterns and rates that alter vascular architecture and cellular behavior. Because of the complexities of studying blood flow in an intact organism, particularly during development, modeling of blood flow in vitro has become a powerful technique for studying hemodynamic dependent signaling mechanisms in ECs. While commercial flow systems that recirculate fluids exist, many commercially available pumps are peristaltic and best model pulsatile flow conditions. However, there are many important in vivo situations in which ECs experience laminar flow conditions, such as along long, straight stretches of the vasculature. To understand EC function under these situations, it is important to be able to consistently model laminar flow conditions in vitro. Here, we outline a method to reliably adapt commercially available peristaltic pumps to reproducibly study laminar flow conditions. Our proof of concept study focuses on 2-dimensional (2D) models but could be further adapted to 3-dimensional (3D) environments to better model in vivo scenarios such as organ development. Our studies make significant inroads into solving technical challenges associated with flow modeling, and allow us to conduct functional studies towards understanding the mechanistic role of flow forces on vascular architecture, cellular behavior, and remodeling during a variety of physiological contexts.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 417
Author(s):  
Bo Lu ◽  
Huagui Zhang ◽  
Abderrahim Maazouz ◽  
Khalid Lamnawar

The multilayer coextrusion process is known to be a reliable technique for the continuous fabrication of high-performance micro-/nanolayered polymeric products. Using laminar flow conditions to combine polymer pairs, one can produce multilayer films and composites with a large number of interfaces at the polymer-polymer boundary. Interfacial phenomena, including interlayer diffusion, interlayer reaction, interfacial instabilities, and interfacial geometrical confinement, are always present during multilayer coextrusion depending on the processed polymers. They are critical in defining the microstructural development and resulting macroscopic properties of multilayered products. This paper, therefore, presents a comprehensive review of these interfacial phenomena and illustrates systematically how these phenomena develop and influence the resulting physicochemical properties. This review will promote the understanding of interfacial evolution in the micro-/nanolayer coextrusion process while enabling the better control of the microstructure and end use properties.


2020 ◽  
Vol 222 ◽  
pp. 115706 ◽  
Author(s):  
Cláudio P. Fonte ◽  
David F. Fletcher ◽  
Pierrette Guichardon ◽  
Joelle Aubin

Author(s):  
Brian Frymyer ◽  
Alparslan Oztekin

Abstract When condensation first forms on a surface, it starts as tiny droplets. As the surface continues to collect condensation, the droplets grow together and form a film. The film increases the thermal resistance of the system. It is possible to remove the fluid from the condensing surface before it develops into a film. Dropwise condensation has the capability of providing up to an order of magnitude higher heat transfer than film condensation. A hydrophobic surface is capable of sustaining dropwise condensation but creates a high energy barrier that restricts nucleation. A hydrophilic surface has a low energy barrier for nucleation but retains the water quickly transitioning to film condensation. A hydrophilic and hydrophobic patterned surface creates a surface with a low nucleation energy barrier and is capable of sustaining dropwise condensation. Surface patterns are evaluated under laminar flow conditions to maximize mass collection. The surfaces are evaluated using a thermal model, which includes an equivalent thermal resistance for diffusion. Laminar flow rates are evaluated using Reynolds numbers from 1,218 to 4 × 105. Hydrophilic nodules sizes are evaluated from 0.1 mm to 3.7 mm. Under natural convection flow, mass collection can be increased by 20% with respect to film heat transfer.


Sign in / Sign up

Export Citation Format

Share Document