An Optimization Study of the Screw Orientation on the Interfacial Strength of the Anterior Lumbar Plate System Using Neurogenetic Algorithms and Experimental Validation

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Chian-Her Lee ◽  
Ching-Chi Hsu ◽  
Dinh Cong Huy

Anterior lumbar plate (ALP) systems have been widely used as an effective interbody fusion device for treating spinal cord compression. However, clinical complications, such as implant loosening and breakage, still occur. Past studies have investigated the effects of the screw orientation on the interfacial strength, but these studies were inconsistent. The purpose of this study was to identify an ALP system with excellent interfacial strength by varying the screw orientation. Three-dimensional finite element models of L4–L5 segments with an ALP system were first constructed. A neurogenetic algorithm, which combines artificial neural networks and genetic algorithms, was subsequently developed to discover the optimum plate design. Finally, biomechanical tests were conducted to validate the results of the finite element models and the engineering algorithm. The results indicated that the interfacial strength of the optimum plate design obtained using the neurogenetic algorithm was excellent compared with the other designs and that all of the locking screws should be inserted divergently. Both the numerical and experimental outcomes can provide clinical suggestions to surgeons and help them to understand the interfacial strength of ALP systems in terms of the screw orientation.

Tribologia ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 9-24 ◽  
Author(s):  
Oday I. ABDULLAH ◽  
Laith Abed SABRI ◽  
Wassan S. Abd Al-SAHB

Most of the failures in the sliding systems occur due to the high thermal stresses, which generated at the interface between the contacting surfaces due to sliding between parts, such as friction clutches and brakes. In this paper, the thermal behaviour of a single-disc clutch is investigated. The surface temperatures of the friction clutch disc will be increased during repeated engagements, in some cases, will lead to premature failure of the clutch disc. In order to avoid this kind of failure, it the surface temperature should be calculated with high accuracy to know the maximum working temperature of the friction system. In this work, the temperature distributions are computed during four repeated engagements at regular intervals (5 s) for the same energy dissipation. Three-dimensional finite element models are used to simulate the typical friction clutch disc.


Author(s):  
Hiroyuki Hashizume ◽  
Toshiyuki Miyake ◽  
Qulin Shi ◽  
Hajime Inoue ◽  
Yasuharu Sakamoto

Sign in / Sign up

Export Citation Format

Share Document