Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Isaac L. Delimont ◽  
Spencer P. Magleby ◽  
Larry L. Howell

Origami-inspired design is an emerging field capable of producing compact and efficient designs. Compliant hinges are proposed as a way to replicate the folding motion of paper when using nonpaper materials. Compliant hinges function as surrogate folds and can be defined as localized reduction of stiffness. The purpose of this paper is to organize and evaluate selected surrogate folds for use in compliant mechanisms. These surrogate folds are characterized based on the desired motion as well as motions typically considered parasitic. Additionally, the surrogate folds' ability to rotate through large deflections and their stability of center of rotation are evaluated. Existing surrogate folds are reviewed and closed-form solutions presented. A diagram intended as a straightforward design guide is presented. Areas for potential development in the surrogate fold design space are noted.

Author(s):  
Isaac L. Delimont ◽  
Spencer P. Magleby ◽  
Larry L. Howell

Origami-inspired design is an emerging field capable of producing compact and efficient designs. Compliant hinges are proposed as a way to replicate the folding motion of paper when using non-paper materials. Compliant hinges function as surrogate folds and can be defined as localized reduction of stiffness. The purpose of this paper is to organize and evaluate selected surrogate folds for use in compliant mechanisms. These surrogate folds are characterized based on the desired motion as well as motions typically considered parasitic. Additionally the surrogate folds’ ability to rotate through large deflections and their stability of center of rotation are evaluated. Existing surrogate folds are reviewed and closed-form solutions presented. A diagram intended as a straightforward design guide is presented. Areas for potential development in the surrogate fold design space are noted.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Isaac L. Delimont ◽  
Spencer P. Magleby ◽  
Larry L. Howell

Origami-inspired design is an emerging field capable of producing compact and efficient designs. The object of a surrogate fold is to provide a foldlike motion in a nonpaper material without undergoing yielding. Compliant mechanisms provide a means to achieve these objectives as large deflections are achieved. The purpose of this paper is to present a continuum of compliant joints capable of achieving motions not currently available with existing compliant joints. A series of compliant joints are presented in which the joint can be designed to allow or resist a variety of secondary motions. Closed-form solutions are presented for these compliant joints.


1982 ◽  
Vol 17 (4) ◽  
pp. 229-236 ◽  
Author(s):  
J G De Oliveira ◽  
T Wierzbicki

The crushing analysis of rotationally symmetric plastic shells undergoing very large deflections is presented. A general methodology is developed and simple closed-form solutions are derived for the case of a conical shell, a spherical shell under point load, a spherical shell crushed between rigid plates and under boss loading, and a spherical cap under external uniform pressure.


Author(s):  
Stephen L. Canfield ◽  
Alexander Shibakov ◽  
Joseph D. Richardson

A significant amount of research has been conducted in developing optimal synthesis techniques for compliant mechanisms with the expectation that distributed devices would result from the continuum design domain. However, it is commonly noted that much of this work has resulted in mechanisms that show localized rather than distributed compliance. This behavior has been attributed to a variety of sources including numerical discrepancies in the model, objective function formulation, and design parameterizations. In this paper, the nature of compliance distribution over particular objective function formulations and design parameterization are further considered in the absence of numerical or resolution issues. The intent is to better understand the behavior of the objective function over multidimensional subsets of the design space that include a direct measure for distribution of compliance. The approach is based on a simple, representative compliant mechanism formed as a segmented beam model. This mechanism is considered to be representative of compliant mechanism behavior in systems where elastic deformation is dominated by bending. Closed-form solutions for the elastic response of this representative mechanism are presented and parametric studies of the response of traditional objectives over subsets of the design space are conducted. The results show that in the absence of numeric artifacts, mechanism efficiencies are improved as mechanisms tend toward lumped compliance when single objectives are considered on mechanisms dominated by bending. However, when more than one objective is deemed important in the design, there exist preferred regions of the workspace, not necessarily in a lumped region, that depend largely on the interaction of the multiple objectives. Of these preferred regions, one lies in a moderately lumped region (h2/h1 ≈ 0.2) and one in a distributed region (h2/h1 ≈ 0.7). The designs in these regions reveal a higher viability in simultaneously satisfying the multiple objectives. This result is based on a visualization of the design space based on measuring the correlation of a multiple objectives over the design space. The results demonstrate several of the factors which contribute to this behavior, and provide an initial measure of the importance of each. Finally, suggestions are provided based on these results that can be used to improve the optimization process if the desire is to achieve distributed compliance.


2010 ◽  
Vol E93-B (12) ◽  
pp. 3461-3468 ◽  
Author(s):  
Bing LUO ◽  
Qimei CUI ◽  
Hui WANG ◽  
Xiaofeng TAO ◽  
Ping ZHANG

Sign in / Sign up

Export Citation Format

Share Document