Initial Study on Controllable Roofing System to Tailor Building Solar Loads for Increased HVAC Efficiency

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Daniel M. Wolfe ◽  
Keith W. Goossen

Space heating and cooling account for a significant percentage of a building's overall energy usage profile. The construction of a building's envelope is an essential component that impacts the overall heating and cooling load. For many years, flat roofs were covered with low albedo materials such as asphalt or modified bitumen, which can reach temperatures of 60 °C–80 °C during summer months. More recently, alternative technologies, such as “white roofs,” have been put forth to mitigate the problem of unwanted thermal gain. However, these traditional roofing materials and recent innovations are passive structures and only promote seasonal benefits. This paper proposes and demonstrates the concept of a controllable reflectance roofing system that can tailor solar loads to desired heating or cooling, significantly reducing overall space heating and cooling energy requirements and costs.

Author(s):  
Daniel M. Wolfe ◽  
Keith Goossen

Space heating and cooling contributes a significant percentage of a building’s overall energy usage profile. The construction of a building’s envelope is an essential component that impacts the overall heating and cooling load. For many years, flat roofs were covered with low albedo materials such as asphalt or modified bitumen, which can reach temperatures of 150°F to 180°F during summer months. More recently, alternative technologies, such as “white roofs”, have been put forth to mitigate the problem of unwanted thermal gain. However, these traditional roofing materials and recent innovations are passive structures and only promote seasonal benefits. This paper proposes and demonstrates the concept of an active variable reflectance roofing system that can tailor solar loads to desired heating or cooling, significantly reducing overall space heating and cooling energy requirements and costs.


Author(s):  
Yazed Yasin Ghadi ◽  
Ali M. Baniyounes

<p>Evaluation and estimation of energy consumption are essential in order to classify the amount of energy used and the way it is utilized in building. Hence, the possibility of any energy savings potential and energy savings opportunities can be identified. The intention of this article is to study and evaluate energy usage pattern of the Central Queensland University campus’ buildings, Queensland, Australia. This article presents the field survey results from the audit of an office building and performance-related measurements of the indoor environmental parameters, for instance, indoor air temperature, humidity and energy consumption concerned to the indoor heating and cooling load. Monthly observed energy usage information was employed to investigate influence of the climate conditions on energy usage.</p>


2019 ◽  
Vol 14 (3) ◽  
pp. 115-128 ◽  
Author(s):  
Sushmita Das ◽  
Aleena Swetapadma ◽  
Chinmoy Panigrahi

The prediction of the heating and cooling loads of a building is an essential aspect in studies involving the analysis of energy consumption in buildings. An accurate estimation of heating and cooling load leads to better management of energy related tasks and progressing towards an energy efficient building. With increasing global energy demands and buildings being major energy consuming entities, there is renewed interest in studying the energy performance of buildings. Alternative technologies like Artificial Intelligence (AI) techniques are being widely used in energy studies involving buildings. This paper presents a review of research in the area of forecasting the heating and cooling load of buildings using AI techniques. The results discussed in this paper demonstrate the use of AI techniques in the estimation of the thermal loads of buildings. An accurate prediction of the heating and cooling loads of buildings is necessary for forecasting the energy expenditure in buildings. It can also help in the design and construction of energy efficient buildings.


2015 ◽  
Vol 10 (5) ◽  
pp. 599
Author(s):  
Cristina E. Molina ◽  
Matti Lehtonen ◽  
Merkebu Degefa

2003 ◽  
Vol 11 (2) ◽  
pp. 191-198 ◽  
Author(s):  
David Banks ◽  
Helge Skarphagen ◽  
Robin Wiltshire ◽  
Chris Jessop

Sign in / Sign up

Export Citation Format

Share Document