scholarly journals Energy Audit and Analysis of an Institutional Building under Subtropical Climate

Author(s):  
Yazed Yasin Ghadi ◽  
Ali M. Baniyounes

<p>Evaluation and estimation of energy consumption are essential in order to classify the amount of energy used and the way it is utilized in building. Hence, the possibility of any energy savings potential and energy savings opportunities can be identified. The intention of this article is to study and evaluate energy usage pattern of the Central Queensland University campus’ buildings, Queensland, Australia. This article presents the field survey results from the audit of an office building and performance-related measurements of the indoor environmental parameters, for instance, indoor air temperature, humidity and energy consumption concerned to the indoor heating and cooling load. Monthly observed energy usage information was employed to investigate influence of the climate conditions on energy usage.</p>

2014 ◽  
Vol 525 ◽  
pp. 408-411
Author(s):  
Min Seon Jang ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang ◽  
Yumin Kim

Window film is generally attached the glazing in buildings to improve the thermal performance of the window system by addressing a range of problems such as indoor temperature rise, indoor temperature imbalance, degraded heating and cooling load due to excessive influx of solar radiation. To evaluate the performance of window films, window films are attached to 3mm or 6mm clear glass. However, window films are generally used on existing window systems for reducing the annual energy consumption. Therefore it is necessary to evaluate the performance of window films depending on the performance of glazing such as clear double glazing or low-e double glazing. Thus the purpose of this study is to analyze the performance of window systems when window film is attached. As a result, in the case of applying window films for reducing the SHGC of buildings, it is necessary to select window films suitable for the configuration and performance of the glazing to be installed, considering the SHGC of the entire glazing system.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 485 ◽  
Author(s):  
Clement Lork ◽  
Vishal Choudhary ◽  
Naveed Ul Hassan ◽  
Wayes Tushar ◽  
Chau Yuen ◽  
...  

In this paper, we develop an ontology-based framework for energy management in buildings. We divide the functional architecture of a building energy management system into three interconnected modules that include building management system (BMS), benchmarking (BMK), and evaluation & control (ENC) modules. The BMS module is responsible for measuring several useful environmental parameters, as well as real-time energy consumption of the building. The BMK module provides the necessary information required to understand the context and cause of building energy efficiency or inefficiency, and also the information which can further differentiate normal and abnormal energy consumption in different scenarios. The ENC module evaluates all the information coming from BMS and BMK modules, the information is contextualized, and finally the cause of energy inefficiency/abnormality and mitigating control actions are determined. Methodology to design appropriate ontology and inference rules for various modules is also discussed. With the help of actual data obtained from three different rooms in a commercial building in Singapore, a case study is developed to demonstrate the application and advantages of the proposed framework. By mitigating the appropriate cause of abnormal inefficiency, we can achieve 5.7%, 11.8% and 8.7% energy savings in Room 1, Room 2, and Room 3 respectively, while creating minimum inconvenience for the users.


2010 ◽  
Vol 168-170 ◽  
pp. 1735-1741
Author(s):  
Mao Yan ◽  
Li Zhu ◽  
Yi Ping Wang ◽  
Ming Ze Zhu

With the high proportion of building energy consumption in the total energy consumption, it is of great importance to relieve the shortage of conventional energy resources and improve the building environment by incorporating solar energy into buildings. A new type solar roof panels were designed and tested in the present paper, which perfectly achieves the integration of solar equipment with building envelope. This panel can act as the construction component for building envelope and completely removes the double-skin mode for conventional solar equipment, as well as the functional equipment for heating and cooling collecting. Corrugated colored steel roof panel was tested under various climate conditions and operation conditions. The results show that in a typical sunny day the average heat collecting efficiency is 49% and the average cooling capacity is 100W/m2. In a cloudy day, the average heat collecting efficiency is 41% and the average cooling capacity is 84W/m2.


2014 ◽  
Vol 672-674 ◽  
pp. 1855-1858
Author(s):  
Yuan Su ◽  
Fu Lin Wang ◽  
Yue Fan

In this research, a normal building and low energy consumption building were chosen to compare and analyze heating and cooling load characteristics. Firstly, the abstract of two buildings were carried out. Secondly, methodology of measurement and calculation was researched. At last the heating and cooling load of two buildings was examined using this methodology.


2020 ◽  
Vol 20 (1) ◽  
pp. 24-34
Author(s):  
Farheen Bano ◽  
Vandana Sehgal

In this study, the energy consumption of three government and three private office buildings in Lucknow was investigated, and the energy performance index (EPI) for each building was determined. The main purpose of this research was to assess the energy usage of the buildings and identify factors affecting the energy usage. An analysis was performed using data from an energy audit of government buildings, electricity bills of private office buildings, and an on-site visit to determine building envelope materials and its systems. The annual energy consumption of buildings has been evaluated through EPI. The EPI, measured in kilowatt hour per square meter per year, is annual energy consumption in kilowatt hours divided by the gross floor area of the building in square meters. In this study, the energy benchmark for day-time-use office buildings in composite climate specified by Energy Conservation Building Code (ECBC) has been compared with the energy consumption of the selected buildings. Consequently, it has been found that the average EPI of the selected buildings was close to the national energy benchmark indicated by ECBC. Moreover, factors causing inefficient energy consumption were determined, and solutions for consistent energy savings are suggested for buildings in composite climate.


2021 ◽  
Author(s):  
Andrea Vickers

Urban agriculture is an important step towards food security in cities where rooftop space is abundant, and underused. This research addresses the potential impact of adding a rooftop greenhouse to a six storey, detached office building on the total heating and cooling energy consumption of both structures operated year‐round, using IES‐VE simulation software. Several variables including the level of insulation between the office building and greenhouse, additional thermal mass, the greenhouse envelope and greenhouse internal loads were tested to observe trends that suggest an impact on the system’s conditioning energy due to the presence of the greenhouse. Overall, it was found to be most likely that the greatest energy savings for an integrated office building and rooftop greenhouse would be achieved with the highest resistance greenhouse envelope possible, which may be limited by the light needs of plants grown in the greenhouse, and incorporation of thermal mass in the greenhouse.


Author(s):  
Ganesh Doiphode ◽  
Hamidreza Najafi ◽  
Mariana Migliori Favaretto

Abstract Buildings are one of the largest energy consumers in the United States. K-12 schools are responsible for nearly 8% of energy consumption by commercial buildings which is equivalent to 1.44% of total annual energy consumption in the country. Understanding the baseline energy consumption of the schools as well as identifying effective energy efficiency measures (EEMs) that result in significant energy savings without compromising occupant’s comfort in a given climate condition are essential factors in moving towards a sustainable future. In a collaboration between Florida Institute of Technology and Brevard Public Schools, three schools are identified for a test study in Melbourne, FL, representing the humid subtropical climate. Energy audit is conducted for these schools and monthly utility bill data as well as background information, end-user’s data and their associated operating schedules are obtained. A detailed analysis is performed on the utility bill data and energy consumption by each end-user is estimated. Several EEMs are considered and evaluated to achieve an improved energy efficiency for the schools. The implementation cost of each EEM and the associated simple payback period is also determined. A study is also conducted to explore possibility of using solar power to cover 50% of energy requirements of each school and the cost and payback period of the project are evaluated. The results of this paper provide insights regarding prioritizing energy efficiency projects in K-12 schools in humid subtropical climates and particularly the state of Florida and help with decision making regarding investment in on-site power generation using solar energy.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2012 ◽  
Author(s):  
Jan Fořt ◽  
Jiří Šál ◽  
Jan Kočí ◽  
Robert Černý

Facing the consequences of climate change and fuel price rises, the achievement of the requirements for low-energy consumption of buildings has become a challenging issue. On top of that, increased demands on indoor hygrothermal conditions usually require the utilization of additional heating, ventilation, and air-conditioning (HVAC) systems to maintain a comfortable environment. On this account, several advanced and modern materials are widely investigated as a promising way for reduction of the buildings’ energy consumption including utilization of passive heating/cooling energy. However, the efficiency and suitability of passive strategies depending on several aspects including the influence of location, exterior climatic conditions, load-bearing materials used, and insulation materials applied. The main objective of this study consists of the investigation of the energy performance benefits gained by the utilization of advanced materials in plasters by computational modeling. Results obtained from a computational simulation reveal the capability of the studied passive cooling/heating methods on the moderation of indoor air quality together with the reduction of the diurnal temperature fluctuation. Achieved results disclose differences in terms of energy savings for even small variation in outdoor climate conditions. Additionally, the effectivity of passive cooling/heating alters considerably during the summer and winter periods. Based on the analysis of simulated heat fluxes, the potential energy savings related to improved thermal properties of the applied plaster layer reached up to 12.08% and thus represent an interesting passive solution towards energy sustainability to meet the criteria on modern buildings.


2020 ◽  
Vol 12 (4) ◽  
pp. 1336 ◽  
Author(s):  
Mehdi Chihib ◽  
Esther Salmerón-Manzano ◽  
Francisco Manzano-Agugliaro

Several factors impact the energy use of university campus buildings. This study aims to benchmark the energy use in universities with Mediterranean climates. The University of Almeria campus was used as a case study, and different types of buildings were analyzed. The second goal was to model the electricity consumption and determinate which parameter correlate strongly with energy use. Macro-scale energy consumption data during a period of seven years were gathered alongside cross-sectional buildings information. Eight years of daily outdoor temperature data were recorded and stored for every half hour. This dataset was eventually used to calculate heating and cooling degree-days. The weather factor was recognized as the variable with the greatest impact on campus energy consumption, and as the coefficient indicated a strong correlation, a linear regression model was established to forecast future energy use. A threshold of 8 GWh has been estimated as the energy consumption limit to be achieved despite the growth of the university. Finally, it is based on the results to inform the recommendations for decision making in order to act effectively to optimize and achieve a return on investment.


Sign in / Sign up

Export Citation Format

Share Document