Active Modulated Reflectance Roofing System to Tailor Building Solar Loads for Increased HVAC Efficiency

Author(s):  
Daniel M. Wolfe ◽  
Keith Goossen

Space heating and cooling contributes a significant percentage of a building’s overall energy usage profile. The construction of a building’s envelope is an essential component that impacts the overall heating and cooling load. For many years, flat roofs were covered with low albedo materials such as asphalt or modified bitumen, which can reach temperatures of 150°F to 180°F during summer months. More recently, alternative technologies, such as “white roofs”, have been put forth to mitigate the problem of unwanted thermal gain. However, these traditional roofing materials and recent innovations are passive structures and only promote seasonal benefits. This paper proposes and demonstrates the concept of an active variable reflectance roofing system that can tailor solar loads to desired heating or cooling, significantly reducing overall space heating and cooling energy requirements and costs.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Daniel M. Wolfe ◽  
Keith W. Goossen

Space heating and cooling account for a significant percentage of a building's overall energy usage profile. The construction of a building's envelope is an essential component that impacts the overall heating and cooling load. For many years, flat roofs were covered with low albedo materials such as asphalt or modified bitumen, which can reach temperatures of 60 °C–80 °C during summer months. More recently, alternative technologies, such as “white roofs,” have been put forth to mitigate the problem of unwanted thermal gain. However, these traditional roofing materials and recent innovations are passive structures and only promote seasonal benefits. This paper proposes and demonstrates the concept of a controllable reflectance roofing system that can tailor solar loads to desired heating or cooling, significantly reducing overall space heating and cooling energy requirements and costs.


2019 ◽  
Vol 14 (3) ◽  
pp. 115-128 ◽  
Author(s):  
Sushmita Das ◽  
Aleena Swetapadma ◽  
Chinmoy Panigrahi

The prediction of the heating and cooling loads of a building is an essential aspect in studies involving the analysis of energy consumption in buildings. An accurate estimation of heating and cooling load leads to better management of energy related tasks and progressing towards an energy efficient building. With increasing global energy demands and buildings being major energy consuming entities, there is renewed interest in studying the energy performance of buildings. Alternative technologies like Artificial Intelligence (AI) techniques are being widely used in energy studies involving buildings. This paper presents a review of research in the area of forecasting the heating and cooling load of buildings using AI techniques. The results discussed in this paper demonstrate the use of AI techniques in the estimation of the thermal loads of buildings. An accurate prediction of the heating and cooling loads of buildings is necessary for forecasting the energy expenditure in buildings. It can also help in the design and construction of energy efficient buildings.


2018 ◽  
Vol 38 (2) ◽  
pp. 741-749
Author(s):  
Sajad Abasnezhad ◽  
Nima Soltani ◽  
Elin Markarian ◽  
Hamed Aghabalayi Fakhim ◽  
Hamed Khezerloo

2014 ◽  
Vol 525 ◽  
pp. 408-411
Author(s):  
Min Seon Jang ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang ◽  
Yumin Kim

Window film is generally attached the glazing in buildings to improve the thermal performance of the window system by addressing a range of problems such as indoor temperature rise, indoor temperature imbalance, degraded heating and cooling load due to excessive influx of solar radiation. To evaluate the performance of window films, window films are attached to 3mm or 6mm clear glass. However, window films are generally used on existing window systems for reducing the annual energy consumption. Therefore it is necessary to evaluate the performance of window films depending on the performance of glazing such as clear double glazing or low-e double glazing. Thus the purpose of this study is to analyze the performance of window systems when window film is attached. As a result, in the case of applying window films for reducing the SHGC of buildings, it is necessary to select window films suitable for the configuration and performance of the glazing to be installed, considering the SHGC of the entire glazing system.


KIEAE Journal ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 29-36
Author(s):  
Nam-Young Jeong ◽  
Ji-Young Lee ◽  
Young Tae Chae

Sign in / Sign up

Export Citation Format

Share Document