Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
K. Zhou ◽  
J. Tang

The uncertainties in real structures usually lead to variations in their dynamic responses. In order to reduce the likelihood of unexpected failures in structures, it is necessary to reduce the response variations. Among various design manipulations, the modification of surface geometry could be a viable option to achieve performance robustness against uncertainties. However, such design modification is difficult to achieve based on conventional finite element methods, primarily due to the inevitable discrepancy between the conventional finite element mesh and the corresponding surface geometry. This issue may become even more severe in design optimization, as an optimized mesh based on conventional finite element analysis may yield nonsmooth surface geometry. In this research, we adopt the nonuniform rational B-splines (NURBS) finite element method to facilitate the robust design optimization (RDO), where the fundamental advantage is that the NURBS finite element mesh is conformal to the underlying NURBS geometry. Furthermore, this conformal feature ensures that, upon finite element-based optimization, the resulting surface geometry is smooth. Taking advantage of that both the uncertainties and the design modifications are small, we formulate a sensitivity-based algorithm to rapidly evaluate the response variations. Based on the direct relation between the response variations and design parameters, the optimal surface geometry that yields the minimal response variation can be identified. Systematic case analyses are carried out to validate the effectiveness and efficiency of the proposed approach.

2018 ◽  
Vol 6 (2) ◽  
pp. 197-208 ◽  
Author(s):  
Jung Min Park ◽  
Byung Chai Lee ◽  
Soo Won Chae ◽  
Ki Youn Kwon

Abstract In the computer aided engineering process with finite element analysis, a CAD surface model is sometimes needed for various tasks such as remeshing, shape optimization or design modification. Occasionally, engineers who perform an analysis at the product design stage are given only finite element mesh models; corresponding CAD models can be unavailable. This paper presents a method to extract free-form B-spline surfaces and certain feature curves from a surface mesh model. First, using the k-means clustering method, our process segments given meshes into a number of regions according to principal curvature information; then, region operations are performed. Next, each region is converted to an approximately free-form B-spline surface. In the last step, feature curves to create loft or sweep surfaces are calculated by minimizing the distance error. Some practical examples are also presented to demonstrate the effectiveness and usefulness of our method. Highlights We propose a new method of creating CAD surfaces from given finite element mesh model. Feature curves are extracted for creating sweep or loft surfaces. By using the generated surfaces based on the feature curves, the shape modification can be easily performed in the designing process.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Peiyu He ◽  
Qinrong Qian ◽  
Yun Wang ◽  
Hong Liu ◽  
Erkuo Guo ◽  
...  

Slewing bearings are widely used in industry to provide rotary support and carry heavy load. The load-carrying capacity is one of the most important features of a slewing bearing, and needs to be calculated cautiously. This paper investigates the effect of mesh size on the finite element (FE) analysis of the carrying capacity of slewing bearings. A local finite element contact model of the slewing bearing is firstly established, and verified using Hertz contact theory. The optimal mesh size of finite element model under specified loads is determined by analyzing the maximum contact stress and the contact area. The overall FE model of the slewing bearing is established and strain tests were performed to verify the FE results. The effect of mesh size on the carrying capacity of the slewing bearing is investigated by analyzing the maximum contact load, deformation, and load distribution. This study of finite element mesh size verification provides an important guidance for the accuracy and efficiency of carrying capacity of slewing bearings.


2019 ◽  
Vol 33 (3) ◽  
pp. 1185-1193 ◽  
Author(s):  
Ghania Ikhenazen ◽  
Messaoud Saidani ◽  
Madina Kilardj

1995 ◽  
Vol 8 (6) ◽  
pp. 282-287 ◽  
Author(s):  
Tanmoy Roy ◽  
Tapan K. Sarkar ◽  
Antonije R. Djordjevic ◽  
Magdalena Salazar-Palma

Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Author(s):  
V. N. Parthasarathy ◽  
Srinivas Kodiyalam

Abstract The quality of a finite element solution has been shown to be affected by the quality of the underlying mesh. A poor mesh may lead to unstable and lor inaccurate finite element approximations. Mesh quality is often characterized by the “smoothness” or “shape” of the elements (triangles in 2-D or tetrahedra in 3-D). Most automatic mesh generators produce an initial mesh where the aspect ratio of the elements are unacceptably high. In this paper, a new approach to produce acceptable quality meshes from an initial mesh is presented. Given an initial mesh (nodal coordinates and element connectivity), a “smooth” final mesh is obtained by solving a constrained optimization problem. The variables for the iterative optimization procedure are the nodal coordinates (excluding, the boundary nodes) of the finite element mesh, and appropriate bounds are imposed on these to prevent an unacceptable finite element mesh. Examples are given of the application of the above method for 2/3-D triangular meshes generated using a QUADTREE | OCTREE automatic mesh generators. Results indicate that the new method not only yields better quality elements when compared with the traditional Laplacian smoothing, but also guarantees a valid mesh unlike the Laplacian method.


Sign in / Sign up

Export Citation Format

Share Document