scholarly journals Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jeff R. Harris ◽  
Blake W. Lance ◽  
Barton L. Smith

A computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate is presented. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). All important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 <  Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.


Author(s):  
Blake W. Lance ◽  
Barton L. Smith

Transient convection has been investigated experimentally for the purpose of providing computational fluid dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the rotatable buoyancy tunnel (RoBuT) was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate in air. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on all the four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using particle image velocimetry (PIV). System response quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. The latter two are available for download while other details are included in this work.



2012 ◽  
Vol 184-185 ◽  
pp. 944-948 ◽  
Author(s):  
Hai Jun Gong ◽  
Yang Liu ◽  
Xue Yi Fan ◽  
Da Ming Xu

For a clear and comprehensive opinion on segregated SIMPLE algorithm in the area of computational fluid dynamics (CFD) during liquid processing of materials, the most significant developments on the SIMPLE algorithm and its variants are briefly reviewed. Subsequently, some important advances during last 30 years serving as increasing numerical accuracy, enhancing robustness and improving efficiency for Navier–Stokes (N-S) equations of incompressible fluid flow are summarized. And then a so-called Direct-SIMPLE scheme proposed by the authors of present paper introduced, which is different from SIMPLE-like schemes, no iterative computations are needed to achieve the final pressure and velocity corrections. Based on the facts cited in present paper, it conclude that the SIMPLE algorithm and its variants will continue to evolve aimed at convergence and accuracy of solution by improving and combining various methods with different grid techniques, and all the algorithms mentioned above will enjoy widespread use in the future.



2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Pang Jung Hoe ◽  
Nik Ahmad Ridhwan Nik Mohd

The need for high performance and green aircraft has brought the blended wing (BWB) aircraft concept to the centre of interest for many researchers. BWB is a type of aircraft characterized by a complex blending geometry between fuselage and wing. Recently, many researches had been performed to unlock its aerodynamic complexity that is still not well understood. In this paper, aerodynamic characteristic of a baseline BWB configuration derived from simple conventional aircraft configuration was analysed using the Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD) solver. The main objectives of this work are to predict the aerodynamic characteristics of the BWB concept at steady flight conditions and at various pitch angles. The results obtained are then compared against a simple conventional aircraft configuration (CAC). The results show that the BWB configuration used has 24% higher L/D ratio than the CAC. The increment to the L/D however is mainly due to lower drag than the improvement in the lift. 



2012 ◽  
Vol 57 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Jennifer N. Abras ◽  
C. Eric Lynch ◽  
Marilyn J. Smith

The focus of this paper is to discuss the unique challenges introduced through the use of unstructured grids in rotorcraft computational fluid dynamics (CFD)–computational structural dynamics (CSD) coupling. The use of unstructured grid methodology in CFD has been expanding because of the advantages in grid generation and modeling of complex configurations. However, the resulting amorphous distribution of the grid points on the rotor blade surface provides no information with regard to the orientation of the blade, in direct contrast to structured grid methodology that can take advantage of the ordered mapping of points to identify the orientation as well as simplifying airloads integration. A methodology has been developed and is described here, which now permits unstructured methods to be utilized for elastic rotary-wing simulations. This methodology is evaluated through comparison of the UH60A rotor with available flight test data for forward flight.



Author(s):  
Balasubramanyam Sasanapuri ◽  
Viraj Suresh Shirodkar ◽  
Wesley Wilson ◽  
Samir Kadam ◽  
Shin Hyung Rhee

A Virtual Model Basin (VMB) is developed based on a Computational Fluid Dynamics (CFD) approach to solving the Reynolds Averaged Navier-Stokes (RANS) equations along with the Volume of Fluid (VOF) method for predicting the free surface. The primary objective of this work is to develop methodologies for the VMB and to demonstrate the capabilities for a generic multi-hull ship geometry. The VMB is used to simulate various model basin tests for steady resistance, maneuvering and seakeeping. For a generic catamaran hull configuration, the methodologies are used for solving these problems and the results are discussed in this paper. VMB results are compared with the results of a benchmarked potential flow theory method for calm water resistance.



2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Tyrone S. Phillips ◽  
Christopher J. Roy

This study investigates the accuracy of various Richardson extrapolation-based discretization error and uncertainty estimators for problems in computational fluid dynamics (CFD). Richardson extrapolation uses two solutions on systematically refined grids to estimate the exact solution to the partial differential equations (PDEs) and is accurate only in the asymptotic range (i.e., when the grids are sufficiently fine). The uncertainty estimators investigated are variations of the grid convergence index and include a globally averaged observed order of accuracy, the factor of safety method, the correction factor method, and least-squares methods. Several 2D and 3D applications to the Euler, Navier–Stokes, and Reynolds-Averaged Navier–Stokes (RANS) with exact solutions and a 2D turbulent flat plate with a numerical benchmark are used to evaluate the uncertainty estimators. Local solution quantities (e.g., density, velocity, and pressure) have much slower grid convergence on coarser meshes than global quantities, resulting in nonasymptotic solutions and inaccurate Richardson extrapolation error estimates; however, an uncertainty estimate may still be required. The uncertainty estimators are applied to local solution quantities to evaluate accuracy for all possible types of convergence rates. Extensions were added where necessary for treatment of cases where the local convergence rate is oscillatory or divergent. The conservativeness and effectivity of the discretization uncertainty estimators are used to assess the relative merits of the different approaches.



1996 ◽  
Vol 40 (02) ◽  
pp. 112-116
Author(s):  
J. Longo ◽  
F. Stern

An evaluation is performed of the surface-ship model-scale database for computational fluid dynamics validation with regard to current status and future requirements. The specific emphasis is on data of relevance to resistance and propulsion and validation of Reynolds-averaged Navier-Stokes computer codes. The data were evaluated relative to criteria and requirements developed for geometry and flow, physics, and computational fluid dynamics validation as well as past uses. Conclusions are made with regard to the available data and past uses, and recommendations are offered for future uses of the available data and future data procurement.



2018 ◽  
Vol 15 (2) ◽  
pp. 161 ◽  
Author(s):  
Arifin Rasyadi Soemaryanto ◽  
Nurhayyan Halim Rosid

Prediction of an aerodynamic load acting on a wing or usually called wing loading becomes an important stage for structural analysis. Several methods have been used in estimating the wing loading. Schrenk approximation method is commonly used to achieve the fast estimation of lift distribution along wingspan, but in order to achieve a high level accuracy of aerodynamic prediction, computational fluid dynamics (CFD) with Navier Stokes-based equation can be used. LAPAN Surveillance UAV (LSU series) has been chosen to represent an aerodynamics analysis on generic small unmanned aircraft with twinboom vertical stabilizer configuration. This study was focused to verify the Schrenk approximation method using high accuracy numerical simulation (CFD). The goal of this study was to determine the lift distribution along wingspan and a number of errors between Schrenk approximation and CFD method. In this study, Schrenk approximation result showed similarity with the CFX simulation. So the two results have been verified in analysis of wing loading. ABSTRAKPrediksi dari beban aerodinamika yang terjadi pada sayap menjadi salah satu tahap yang penting dalam analisis struktur perancangan pesawat. Beberapa metode telah digunakan untuk mengestimasi besarnya beban aerodinamika pada sayap. Metode Schrenk umum digunakan untuk estimasi cepat perhitungan besar distribusi gaya angkat di sepanjang sayap. Guna mencapai tingkat akurasi yang tinggi dari prediksi aerodinamika, simulasi Computational Fluid Dynamics (CFD) dengan berbasis persamaan Navier-Stokes dapat digunakan. Pesawat nirawak LSU dipilih untuk merepresentasikan analisis aerodinamika pada pesawat nirawak dengan konfigurasi twin-tailboom pusher. Fokus dari studi yang dilakukan adalah untuk memverifikasi dari metode pendekatan dari Schrenk dengan menggunakan metode yang memiliki akurasi tinggi seperti simulasi CFD. Tujuan dari studi adalah untuk menghitung distribusi gaya angkat sepanjang sayap dan menentukan seberapa besar error dari kedua metode.



2011 ◽  
Vol 55 (03) ◽  
pp. 185-195
Author(s):  
Virag Mishra ◽  
S. Vengadesan

This paper presents a computational fluid dynamics (CFD) approach to the calculation of translational added mass coefficient of axisymmetric underwater bodies in both longitudinal and transverse directions. The proposed method involves CFD simulations of accelerated as well as uniform flows past axisymmetric bodies based on Reynolds averaged Navier-Stokes (RANS) equations and makes use of the results of these simulations to obtain the inertia force acting on a body as a function of time. The translational added mass can be obtained from this inertia force history. Validation of the methodology is presented for the benchmark case of accelerated flow past sphere and infinitely long circular cylinder in cross-flow for which analytical solutions of the added mass problem are well known.



Author(s):  
M. Mansoori ◽  
A. C. Fernandes

This work investigates the hydrodynamic effects of introducing interceptors on fast vessels. Interceptors are vertical flat blades installed at the bottom of the stern vessel. They cause changes in pressure magnitudes around the vessel bottom and especially at the end of the hull where they are located. The pressure variations have an effect on resistance, draft height, and lifting forces which may result in a better control of trim. This work uses a combination of computational fluid dynamics (CFD) and ultrareduced experimental tests. The investigation applies the Reynolds-averaged Navier–Stokes (RANS) equations to model the flow around the ultrareduced model with interceptors with different heights. Our model is analyzed based on a finite-volume method using dynamic mesh. The boat motion is only with two degrees-of-freedom. The results show that the interceptor causes an intense pressure gradient, decreasing the wet surface of the vessel and, quite surprisingly, the resistance. At last, this paper shows that, within a range, a better trim control is possible. The height of the interceptor has an important effect on interceptor efficiency, and it should be especially selected according to the length of the vessel and boundary layer thickness at the transom. The ultrareduced model tests were performed in the Current Channel of the Laboratory of Waves and Current of COPPE/UFRJ (LOC in Portuguese acronym).



Sign in / Sign up

Export Citation Format

Share Document