calm water
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 127)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Hafizul Islam ◽  
Carlos Guedes Soares

Abstract The paper presents calm water and head wave simulation results for a KRISO Container Ship (KCS) model. All simulations have been performed using the open source CFD toolkit, OpenFOAM. Initially, a systematic verification study is presented using the ITTC guideline to assess the simulation associated uncertainties. After that, a validation study is performed to assess the accuracy of the results. Next, calm water simulations are performed with sinkage and trim free condition at varying speeds. Later, head wave simulations are performed with heave and pitch free motion. Simulations are repeated for varying wave lengths to assess the encountered added resistance by the ship in design speed. The results are validated against available experimental data. Finally, power predictions are made for both calm water and head wave cases to assess the required propulsion power. The paper tries to assess the validity of using 25% addition as sea margin over calm water prediction to consider wave encounters


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 570
Author(s):  
Anargyros S. Mavrakos ◽  
Dimitrios N. Konispoliatis ◽  
Dimitrios G. Ntouras ◽  
George P. Papadakis ◽  
Spyros A. Mavrakos

Moonpool-type floaters were initially proposed for applications such as artificial islands or as protecting barriers around a small area enabling work at the inner surface to be carried out in relatively calm water. In recent years, a growing interest on such structures has been noted, especially in relation to their use as heaving wave energy converters or as oscillating water column (OWC) devices for the extraction of energy from waves. Furthermore, in the offshore marine industry, several types of vessels are frequently constructed with moonpools. The present paper deals with the hydrodynamics of bottomless cylindrical bodies having vertical symmetry axis and floating in a water of finite depth. Two computation methods were implemented and compared: a theoretical approach solving analytically the corresponding diffraction problem around the moonpool floater and a computational fluid dynamics (CFD) solver, which considers the viscous effects near the sharp edges of the body (vortex shedding) as non-negligible. Two different moonpool-type configurations were examined, and some interesting phenomena were discussed concerning the viscous effects and irregularities caused by the resonance of the confined fluid.


2022 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Kai Dong ◽  
Xianzhou Wang ◽  
Donglei Zhang ◽  
Liwei Liu ◽  
Dakui Feng

The simulations of submarine sailing near the free surface with long-crested waves have been conducted in this study using an in-house viscous URANS solver with an overset grid approach. First, the verification and validation procedures were performed to evaluate the reliability, with the results showing that the generation of irregular waves is adequately accurate and the results of total resistance are in good agreement with EFD. Next, three different submerged depths ranging from 1.1D to 3.3D were selected and the corresponding conditions of submarine sailing near calm water were simulated, the results of which were then compared with each other to investigate the influence of irregular waves and submerged depths. The simulations of the model near calm water at different submerged depths demonstrated that the free surface will cause increasing resistance, lift, and bow-up moments of the model, and this influence decreases dramatically with greater submerged depths. The results of the irregular wave simulations showed that irregular waves cause considerable fluctuations of hydrodynamic force and moments, and that this influence remains even at a deeper submerged depth, which can complicate the control strategies of the submarine. The response spectrum of hydrodynamic forces and moments showed slight amplitudes in the high-frequency region, and the model showed less sensitivity to high-frequency excitations.


2021 ◽  
Vol 152 (A4) ◽  
Author(s):  
G J Macfarlane ◽  
M R Renilson ◽  
T Turner

The safety of a ship which is damaged below the waterline will depend on the way water floods into the internal compartments. The water will cause the ship to take on an angle of heel and trim which will further affect the flooding into the compartments. The ship’s equilibrium position in calm water can be predicted using hydrostatic theory, however at present it is difficult to predict the transient behaviour between the initial upright position of the ship and its final equilibrium. In some cases, the transient motion may cause a capsize prior to a possible equilibrium position being reached. This paper describes an investigation of this phenomenon using a model of a warship with simplified, typical internal geometry. With the model initially stationary, a rapid damage event was generated, and the global motions measured, along with the water levels in some of the internal compartments, as functions of time. Immediately after the damage occurred the model rolled to starboard (towards the damage). It then rolled to port (away from the damage) before eventually returning to starboard and settling at its equilibrium value. In all the tests conducted the equilibrium heel angle was less than that reached during the initial roll to starboard. This implies that the roll damping, and the way in which the water floods into the model immediately following the damage, could both have a very important influence on the likelihood of survival.


2021 ◽  
Vol 153 (A1) ◽  
Author(s):  
H Amini ◽  
S Steen

A range of model experiments have been carried out in calm water and waves for an oil spill vessel model with twin tractor azimuth thrusters at different heading angles and advance coefficients in the large towing tank at the Marine Technology Centre in Trondheim, Norway. Propeller shaft bending loads have been measured using a shaft dynamometer capable of measuring all shaft side force and bending moment components as well as propeller torque and thrust. The results include the loads on the propeller shaft with and without the presence of a ship hull model at the same heading angles and advance velocities in order to study the wake influence from the ship hull on the hydrodynamic loads. Results show that the ship hull wake has a much stronger effect on the propeller loads when the propeller is azimuthed outward from the ship hull centreline than inward. Measurements from the experiments in waves are also presented for the same thruster model in a straight-line course for both the head and following sea states under different wave conditions. Larger bending loads are found in head sea conditions compared with the following sea conditions. Generally it is found that the shaft bending loads and lateral forces are quite large, which is important to consider in the mechanical design layout and for dimensioning of components.


2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
S Wang ◽  
C Guedes Soares

A hydrodynamic study on the asymmetrical water impact of two-dimensional wedges with roll angle is presented. The slam induced loads on the wedges entering calm water with both vertical and horizontal velocities are predicted based on the explicit finite element method. The effects of the horizontal impact velocity and the roll angle are investigated through the predicted results of pressure distribution, pressure variation during the water entry and total impact force, which are also compared with analytical formulations and other numerical calculations. The present method gives reasonable predictions, compared to the numerical and analytical results.


Author(s):  
A Ghassemzadeh ◽  
A Dashtimanesh ◽  
M Habibiasl ◽  
P Sahoo

In this paper, an attempt has been made to predict the performance of a planing catamaran using a mathematical model. Catamarans subjected to a common hydrodynamic lift, have an extra lift between the two asymmetric half bodies. In order to develop a mathematical model for performance prediction of planing catamarans, existing formulas for hydrodynamic lift calculation must be modified. Existing empirical and semi-empirical equations in the literature have been implemented and compared against available experimental data. Evaluation of lift in comparison with experimental data has been documented. Parameters influencing the interaction between demi-hulls and separation effects have been analyzed. The mathematical model for planing catamarans has been developed based on Savitsky’s method and results have been compared against experimental data. Finally, the effects of variation in hull geometry such as deadrise angle and distance between two half bodies on equilibrium trim angle, resistance and wetted surface have been examined.


2021 ◽  
Vol 154 (A2) ◽  
Author(s):  
G J Macfarlane ◽  
M R Renilson ◽  
T Turner

In order to provide data to assist in developing and validating a numerical code to simulate the flooding immediately following damage scale model experiments were conducted on a fully constrained model to investigate the progressive flooding through a complex series of internal compartments within a generic destroyer type hull form. A 3.268 metre long model of a generic destroyer hull form with a simplified, typical internal arrangement was constructed to cover the configuration of greatest interest. A very rapid damage opening scenario was simulated by rupturing a taut membrane covering an opening. The model was instrumented to measure the levels of water and the air pressures in various compartments. In addition, video footage was obtained of the flooding process from both internally and externally of the model. Previous work presented by Macfarlane et al. (2010) showed the results for the unconstrained model. This paper reports on the outcomes from the experimental program where the model was fully constrained in all six degrees of freedom. Firstly, tests were conducted in calm water with damage opening extents ranging from 50% to 100%. When the damage opening was only 50% the rate of rise of water in each of the compartments was only marginally slower than for the 100% damage extent case. Secondly, the test results in calm water were compared against results from tests in regular beam seas. A ‘set-up’ of water inside each of the compartments on the 2nd Deck was found during the wave tests. The result of this is that the mean equilibrium water level in each compartment in the regular beam sea cases is noticeably higher than the equivalent calm water case, particularly for the two compartments on the port side, away from the damage. Finally, analysis of the data from further calm water and beam sea tests suggests that a similar result also occurs when the model is fixed at various non-zero heel angles.


Author(s):  
Р. Али ◽  
Н.В. Тряскин

Суда в некоторых случаях эксплуатации могут двигаться в непосредственной близости друг от друга. Такой сценарий обычно связан с изменением полей давления и скорости вблизи корпуса судов, в результате чего возникают гидродинамические силы и моменты взаимодействия, которые сильно зависит от относительной длины. В этой статье была проведена серия систематических расчётов на двух корпусах KVLCC2, движущихся на большой глубине в безветренную погоду с одинаковой постоянной малой скоростью, не превышающей 4 уз., чтобы исследовать влияние отношения длин на силы и моменты гидродинамического взаимодействия. OpenFOAM, пакет CFD с открытым исходным кодом использовался для организации и проведения расчётов. Метод осреднения по Рейнольдсу уравнений Навье-Стокса (RANS) применялся для моделирования турбулентности. Хорошо известная модель турбулентности использовалась для замыкания уравнений Навье-Стокса. Числовые результаты, касающиеся поля скоростей и гидродинамического следа за судами, были обработаны, проанализированы, сопоставлены и показали хорошее согласование с экспериментальными результатами. Ships, during the lightering operations, are forced to sail in a close position to each other, such a scenario generally associates with a change in the pressure and velocity fields surrounding their hulls, as a result, interaction hydrodynamic forces and moments are generated which are strongly related to the relative length of the interacted ships. In this paper, a series of systematic computations were performed on two KVLCС2 hulls advancing in deep and calm water with the same constant low speed (full scale speed 4kt) in order to investigate the influence of the length ratio on the hydrodynamic interaction forces and moments during the lightering operation. OpenFOAM, an open-source CFD packet was used for carrying out the simulations, Reynolds Averaged Navier-Stokes (RANS) method was used for turbulence modeling and the well-known turbulent model k-ω SST was used to close RANS equations. Numerical results have been post-processed, analyzed, compared and found to be of a good agreement with the experimental results. The velocity fields and wake were presented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document