An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations

Author(s):  
B. Parsa Moghaddam ◽  
Sh. Yaghoobi ◽  
J. A. Tenreiro Machado

This article presents a numerical method based on the Adams–Bashforth–Moulton scheme to solve variable-order fractional delay differential equations (VFDDEs). In these equations, the variable-order (VO) fractional derivatives are described in the Caputo sense. The existence and uniqueness of the solutions are proved under Lipschitz condition. Numerical examples are presented showing the applicability and efficiency of the novel method.


2019 ◽  
Vol 126 ◽  
pp. 266-282 ◽  
Author(s):  
C.J. Zúñiga-Aguilar ◽  
J.F. Gómez-Aguilar ◽  
R.F. Escobar-Jiménez ◽  
H.M. Romero-Ugalde


2012 ◽  
Vol 500 ◽  
pp. 586-590
Author(s):  
Xiang Mei Zhang ◽  
Xian Zhou Guo ◽  
Anping Xu

The paper is devoted to the numerical stability of fractional delay differential equations with non-smooth coefficients using the Chebyshev collocation method. In this paper, based on the Grunwald-Letnikov fractional derivatives, we discuss the approximation of fractional differentiation by the Chebyshev polynomial of the first kind. Then we solve the stability of the fractional delay differential equations. Finally, the stability of the delayed Mathieu equation of fractional order is examined for a set of case studies that contain the complexities of periodic coefficients, delays and discontinuities.





Author(s):  
Waleed M. Abd-Elhameed ◽  
José A. Tenreiro Machado ◽  
Youssri H. Youssri

Abstract This paper presents an explicit formula that approximates the fractional derivatives of Chebyshev polynomials of the first-kind in the Caputo sense. The new expression is given in terms of a terminating hypergeometric function of the type 4 F 3(1). The integer derivatives of Chebyshev polynomials of the first-kind are deduced as a special case of the fractional ones. The formula will be applied for obtaining a spectral solution of a certain type of fractional delay differential equations with the aid of an explicit Chebyshev tau method. The shifted Chebyshev polynomials of the first-kind are selected as basis functions and the spectral tau method is employed for obtaining the desired approximate solutions. The convergence and error analysis are discussed. Numerical results are presented illustrating the efficiency and accuracy of the proposed algorithm.



2017 ◽  
Vol 35 (2) ◽  
pp. 49-58 ◽  
Author(s):  
Behrouz Parsa Moghaddam ◽  
Zeynab Salamat Mostaghim

In this paper we present and discuss a new numerical scheme for solving fractional delay differential equations of the generalform:$$D^{\beta}_{*}y(t)=f(t,y(t),y(t-\tau),D^{\alpha}_{*}y(t),D^{\alpha}_{*}y(t-\tau))$$on $a\leq t\leq b$,$0<\alpha\leq1$,$1<\beta\leq2$ and under the following interval and boundary conditions:\\$y(t)=\varphi(t) \qquad\qquad -\tau \leq t \leq a,$\\$y(b)=\gamma$\\where $D^{\beta}_{*}y(t)$,$D^{\alpha}_{*}y(t)$ and $D^{\alpha}_{*}y(t-\tau)$ are the standard Caputo fractional derivatives, $\varphi$ is the initial value and $\gamma$ is a smooth function.\\We also provide this method for solving some scientific models. The obtained results show that the propose method is veryeffective and convenient.





Sign in / Sign up

Export Citation Format

Share Document