scholarly journals A collocation approach for multiterm variable-order fractional delay-differential equations using shifted Chebyshev polynomials

Author(s):  
Khalid K. Ali ◽  
Emad M.H. Mohamed ◽  
Mohamed A. Abd El salam ◽  
Kottakkaran Sooppy Nisar ◽  
M. Motawi Khashan ◽  
...  
Author(s):  
B. Parsa Moghaddam ◽  
Sh. Yaghoobi ◽  
J. A. Tenreiro Machado

This article presents a numerical method based on the Adams–Bashforth–Moulton scheme to solve variable-order fractional delay differential equations (VFDDEs). In these equations, the variable-order (VO) fractional derivatives are described in the Caputo sense. The existence and uniqueness of the solutions are proved under Lipschitz condition. Numerical examples are presented showing the applicability and efficiency of the novel method.


Author(s):  
Waleed M. Abd-Elhameed ◽  
José A. Tenreiro Machado ◽  
Youssri H. Youssri

Abstract This paper presents an explicit formula that approximates the fractional derivatives of Chebyshev polynomials of the first-kind in the Caputo sense. The new expression is given in terms of a terminating hypergeometric function of the type 4 F 3(1). The integer derivatives of Chebyshev polynomials of the first-kind are deduced as a special case of the fractional ones. The formula will be applied for obtaining a spectral solution of a certain type of fractional delay differential equations with the aid of an explicit Chebyshev tau method. The shifted Chebyshev polynomials of the first-kind are selected as basis functions and the spectral tau method is employed for obtaining the desired approximate solutions. The convergence and error analysis are discussed. Numerical results are presented illustrating the efficiency and accuracy of the proposed algorithm.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document