Feasibility Study of a Residential Hybrid Ground Source Heat Pump System

Author(s):  
Siddharth Balasubramanian ◽  
Jonathan L. Gaspredes ◽  
Tess J. Moon ◽  
Glenn Y. Masada

A residential hybrid ground source heat pump (HGSHP) model is presented, which integrates a compact cooling tower with a GSHP. The base case GSHP model is for a single story, 195 m2 house with a 14 kW heat pump and four 68.8 m deep vertical boreholes and uses Austin, TX weather data. The GSHP model was run for a range of supplemental heat rejection (SHR) capacities of an unidentified device located between the heat pump outlet and ground loop inlet, and estimates of improved heat pump performance and ground temperature effects are presented. Then, a compact closed wet cooling tower (CWCT) model is presented and coupled to the GSHP model. The tower's 7 kW capacity represents the smallest commercially available cooling tower. Each of the four HGSHP boreholes was reduced to 26.5 m. The operational and economic performance of the HGSHP is compared to a GSHP alone. Metrics include estimates of initial and lifetime operational costs, ground temperature effects, and heat pump efficiency. Simulations for ten years of operation show that adding the compact CWCT is cost effective, extends the lifetime of the borehole system, and maintains high heat pump efficiencies.

2011 ◽  
Vol 354-355 ◽  
pp. 798-801
Author(s):  
Qin Tao Zhou ◽  
Hua Dong ◽  
En Ze Zhou ◽  
Wei Yi

This study presents a simulation approach to assess the viability of solar assisted ground source heat pump system in different regions of China. A short time step model of ground loop exchanger is employed in the simulation with a 30% solar fraction. Weather data files used in the simulation are created based on Chinese Typical Year Weather (CTYW) data. Borehole length is optimized with a safety stop temperature of 0°C. The minimum Entering Fluid Temperature (EFT) decreases 1.3°C after 20-year simulation time and the team effect of ground loop exchangers is weaken as a result of spontaneous recovery of storage temperature. Borehole length replaced by area of solar collector ranges from 3.9m to 2.5m in the six cities. The results show that the annual performance of ground loop exchanger is low in heating-dominated regions and a solar assisted ground source heat pump (SAGSHP) system is needed in order to improve the system performance.


2017 ◽  
Vol 205 ◽  
pp. 3214-3221
Author(s):  
Shiyu Zhou ◽  
Wenzhi Cui ◽  
Shuanglong Zhao ◽  
Ke Zhu

Author(s):  
Siddharth Balasubramanian ◽  
Jonathan Gaspredes ◽  
Tess J. Moon ◽  
Glenn Y. Masada

Simulation results from a hybrid ground source heat pump model are presented for a residential home that integrates a compact cooling tower into an existing ground source heat pump model. The tower is introduced to assess its impact on the operational and economic performance over that of a GSHP alone. Metrics include initial and lifetime operational costs, ground heating effects, heat pump efficiency, and ability to control the temperature of the conditioned space. A single story, 195 m2 house located in Austin, Texas is used as a cooling-dominated test case. Simulations spanning 10-years of operation show that adding the cooling tower is cost effective, but more importantly, it extends the lifetime of the borehole system and maintains the heat pump efficiencies at high levels.


Sign in / Sign up

Export Citation Format

Share Document