The Effect of Spatially Nonuniform Internal Heating on the Onset of Convection in a Horizontal Fluid Layer

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
A. V. Kuznetsov ◽  
D. A. Nield

In this paper, we investigated the onset of natural convection in a horizontal fluid layer due to nonuniform internal heat generation, which is relevant to a number of geophysical situations. We investigated a number of special cases, which we believe are paradigmatic. Those include linear, quadratic, concentrated, and exponential source strength distributions. Our results show that those situations that lead to a reduction/increase in the size of the region in which the basic temperature gradient is destabilizing lead to an increase/decrease in stability.

2002 ◽  
Vol 2002.42 (0) ◽  
pp. 38-39
Author(s):  
Kengo YONEKURA ◽  
Yuji TASAKA ◽  
Yoichi KUDO ◽  
Norihiko TADATA ◽  
Yasushi TAKEDA ◽  
...  

2002 ◽  
Vol 2002.42 (0) ◽  
pp. 36-37
Author(s):  
Yuji TASAKA ◽  
Kengo YONEKURA ◽  
Yoichi KUDO ◽  
Norihiko TADATA ◽  
Yasushi TAKEDA ◽  
...  

1991 ◽  
Vol 113 (1) ◽  
pp. 122-127 ◽  
Author(s):  
N. Rudraiah ◽  
G. N. Sekhar

The effect of a uniform distribution of heat source on the onset of stationary convection in a horizontal Boussinesq magnetic fluid layer bounded by isothermal nonmagnetic boundaries is investigated. Solutions are obtained using a higher order Galerkin expansion technique, considering different isothermal boundary combinations (rigid-rigid, rigid-free, and free-free). It is found that the effect of internal magnetic number, due to a heat source, is to make the system more unstable. The results obtained, in the limiting cases, compare well with the existing literature.


2019 ◽  
Vol 8 (1) ◽  
pp. 546-558 ◽  
Author(s):  
Amit Mahajan ◽  
Reena Nandal

Abstract The present work involves the study of penetrative convection in an incompressible fluid-saturated porous media with local thermal non-equilibrium. The onset of convection evaluated linearly and nonlinearly for the system influenced by heat extraction and heat generation. Darcy-Brinkman law is employed to model the momentum equation and four type of internal heat generating function are considered which leads to thermo-convective instability within the fluid layer. Linear analysis carried out by using normal mode technique and nonlinear stability analysis has been done by energy method. Due to heat generation within the fluid layer and heat extraction through boundary, the subcritical instability may exist with higher possibility. Effects of various parameters as: inter-phase heat transfer parameter, Darcy-Brinkman number, porosity-modified conductivity ratio, and heat parameter are explored on Darcy-Rayleigh number by Chebyshev pseudospectral method as numerical form and graphical form.


Sign in / Sign up

Export Citation Format

Share Document