Engineering Embryonic Stem Cell Microenvironments for Tailored Cellular Differentiation

Author(s):  
Chenyu Huang ◽  
Alexander Melerzanov ◽  
Yanan Du

The rapid progress of embryonic stem cell (ESCs) research offers great promise for drug discovery, tissue engineering, and regenerative medicine. However, a major limitation in translation of ESCs technology to pharmaceutical and clinical applications is how to induce their differentiation into tailored lineage commitment with satisfactory efficiency. Many studies indicate that this lineage commitment is precisely controlled by the ESC microenvironment in vivo. Engineering and biomaterial-based approaches to recreate a biomimetic cellular microenvironment provide valuable strategies for directing ESCs differentiation to specific lineages in vitro. In this review, we summarize and examine the recent advances in application of engineering and biomaterial-based approaches to control ESC differentiation. We focus on physical strategies (e.g., geometrical constraint, mechanical stimulation, extracellular matrix (ECM) stiffness, and topography) and biochemical approaches (e.g., genetic engineering, soluble bioactive factors, coculture, and synthetic small molecules), and highlight the three-dimensional (3D) hydrogel-based microenvironment for directed ESC differentiation. Finally, future perspectives in ESCs engineering are provided for the subsequent advancement of this promising research direction.

2004 ◽  
Vol 10 (11-12) ◽  
pp. 1716-1724 ◽  
Author(s):  
Tetsuya Imamura ◽  
Li Cui ◽  
Ruifeng Teng ◽  
Kohei Johkura ◽  
Yasumitsu Okouchi ◽  
...  

2005 ◽  
Vol 92 (5) ◽  
pp. 1265-1276 ◽  
Author(s):  
Chang-Hwan Park ◽  
Yang-Ki Minn ◽  
Ji-Yeon Lee ◽  
Dong Ho Choi ◽  
Mi-Yoon Chang ◽  
...  

2022 ◽  
Vol 53 (5) ◽  
Author(s):  
Ivana Kmetič ◽  
Monika Roller ◽  
Marina Miletić ◽  
Teuta Murati

U toksikološkim istraživanjima uz uporabu klasičnih (in vivo) istraživanja, primjenjuju se alternativni test sustavi. Korištenje laboratorijskih životinja, embrija, humanog i animalnog tkiva, kultura stanica i fetalnog seruma u istraživanjima smatra se etički problematičnim te se ograničava zakonima, pravilnicima i praksom. Razmatranjem načina kojima bi se neetičnost mogla izbjeći, došlo je do razvoja “3R” načela (akronim za tri pristupa koja bi se trebala provoditi pri istraživanjima na laboratorijskim životinjama), a to su: smanjenje/racionalizacija uporabe laboratorijskih životinja (engl. Reduction), načelo njihove zamjene (engl. Replacement) i poboljšanje uvjeta uzgoja, smještaja i skrbi za životinje (engl. Refinement). Većina je alternativnih testova toksičnosti još uvijek u postupku validacije. Pojedini in vitro testovi za istraživanja embriotoksičnosti (etički posebno osjetljivo područje) koja su priznala nadležna regulatorna tijela, su EST (engl. Embryonic Stem cell Test), WEC (engl. Whole- Embryo Culture) i MM (engl. MicroMass) test. Standardizacija protokola i uvođenje novih in vitro modela predstavlja važan segment napretka u toksikološkim istraživanjima. Znanstvena budućnost tu vidi mogućnost razvoja i implementacije načela etičnosti u istraživanja primjenjujući sustave koji će promišljeno i bez korištenja živih organizama dijelom nadomjestiti metode u biomedicini, veterinarskoj medicini, biotehnologiji i užem smislu - toksikologiji i farmakologiji.


2019 ◽  
Vol 31 (1) ◽  
pp. 215
Author(s):  
M. Nowak-Imialek ◽  
X. Gao ◽  
P. Liu ◽  
H. Niemann

The domestic pig is an excellent large animal in biomedical medicine and holds great potential for testing the clinical safety and efficacy of stem cell therapies. Previously, numerous studies reported the derivation of porcine embryonic stem cell (ESC)-like lines, but none of these lines fulfilled the stringent criteria for true pluripotent germline competent ESC. Here, we report the first establishment of porcine expanded potential stem cells (pEPSC) from parthenogenetic and in vivo-derived blastocysts. A total of 12 cell lines from parthenogenetic blastocysts from Day 7 (12/24) and 26 cell lines from in vivo-derived blastocysts from Day 5 (26/27) were established using defined stem cell culture conditions. These cells closely resembled mouse ESC with regard to morphology, formed compact colonies with high nuclear/cytoplasmic ratios, and could be maintained in vitro for more than 40 passages with a normal karyotype. The pEPSC expressed key pluripotency genes, including OCT4, NANOG, SOX2, and SALL4 at similar levels as porcine blastocysts. Immunostaining analysis confirmed expression of critical cell surface markers SSEA-1 and SSEA-4 in pEPSC. The EPSC differentiated in vitro into tissues expressing markers of the 3 germ layers: SOX7, AFP, T, DES, CRABP2, α-SMA, β-tubulin, PAX6, and, notably, the trophoblast markers HAND1, GATA3, PGF, and KRT7. After injection into immunocompromised mice, the pEPSC formed teratomas with derivatives of the 3 germ layers and placental lactogen-1 (PL-1)-positive trophoblast-like cells. Additionally, pEPSC cultured in vitro under conditions specific for germ cells formed embryoid bodies, which contained ~9% primordial germ cell (PGC)-like cells (PGCLC) that expressed PGC-specific genes, including NANOS3, BLIMP1, TFAP2C, CD38, DND1, KIT, and OCT4 as detected by quantitative RT-PCR and immunostaining. Next, we examined the in vivo differentiation potential of pEPSC and injected pEPSC stably expressing the CAG-H2B-mCherry transgene reporter into porcine embryos. The donor cells proliferated and were localised in both the trophectoderm and inner cell mass of the blastocysts cultured in vitro. After transfer to 3 recipient sows, chimeric embryos implanted and a total of 45 fetuses were recovered on Days 26 to 28. Flow cytometry of single cells collected from embryonic and extraembryonic tissues of the fetuses revealed mCherry+ cells in 7 conceptuses, in both the placenta and embryonic tissues; in 3 chimeric conceptuses, mCherry+ cells were exclusively found in embryonic tissues; and in 2 conceptuses, mCherry+ cells were exclusively localised in the placenta. The contribution of the mCherry+ cells was low (0.4-1.7%), but they were found and co-detected in multiple porcine embryonic tissues using tissue lineage-specific markers, including SOX2, TUJ1, GATA4, SOX17, AFP, α-SMA, and trophoblast markers PL-1 and KRT7 in the placental cells. The successful establishment of pEPSC represents a major step forward in stem cell research and provides cell lines with the unique state of cellular potency useful for genetic engineering and unravelling pluripotency regulation in pigs.


2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
J. K. Park ◽  
H. S. Kim ◽  
K. J. Uh ◽  
K. H. Choi ◽  
H. M. Kim ◽  
...  

Since pluripotent cells were first derived from the inner cell mass (ICM) of mouse blastocysts, tremendous efforts have been made to establish embryonic stem cell (ESC) lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to derive pluripotent cells of naïve state that represents full pluripotency, due to the frequent occurrence of spontaneous differentiation into an EpiSC-like state during culture in pigs. We have been able to derive EpiSC-like porcine embryonic stem cell (pESC) lines of a differentiated non-ES cell state from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) into porcine fibroblast cells. In this study, we analysed characteristics such as marker expression, pluripotency and the X chromosome inactivation (XCI) status of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1-60 and TRA 1-81. Furthermore all of these cell lines showed in vitro differentiation potential; female XCI activity and a normal karyotype. Here we provide preliminary results that suggest that, as a nonpermissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. This work was supported by the BioGreen 21 Program (#20070401034031, PJ0081382011), Rural Development Administration, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document