An Ordinary Differential Equation Formulation for Multibody Dynamics: Nonholonomic Constraints

Author(s):  
Edward J. Haug

A method is presented for formulating and numerically integrating ordinary differential equations of motion for nonholonomically constrained multibody systems. Tangent space coordinates are defined in configuration and velocity spaces as independent generalized coordinates that serve as state variables in the formulation, yielding ordinary differential equations of motion. Orthogonal-dependent coordinates and velocities are used to enforce constraints at position, velocity, and acceleration levels. Criteria that assure accuracy of constraint satisfaction and well conditioning of the reduced mass matrix in the equations of motion are used as the basis for updating local coordinates on configuration and velocity constraint manifolds, transparent to the user and at minimal computational cost. The formulation is developed for multibody systems with nonlinear holonomic constraints and nonholonomic constraints that are linear in velocity coordinates and nonlinear in configuration coordinates. A computational algorithm for implementing the approach is presented and used in the solution of three examples: one planar and two spatial. Numerical results using a fifth-order Runge–Kutta–Fehlberg explicit integrator verify that accurate results are obtained, satisfying all the three forms of kinematic constraint, to within error tolerances that are embedded in the formulation.

Author(s):  
Edward J. Haug

A method is presented for formulating and numerically integrating ordinary differential equations (ODEs) of motion for holonomically constrained multibody systems. Tangent space coordinates are defined as independent generalized coordinates that serve as state variables in the formulation, yielding ODEs of motion. Orthogonal dependent coordinates are used to enforce kinematic constraints at position, velocity, and acceleration levels. Criteria that assure accuracy of constraint satisfaction and well conditioning of the reduced mass matrix in the equations of motion are used as the basis for redefining local coordinates on the constraint manifold, as needed, transparent to the user and at minimal computational cost. The formulation is developed for holonomically constrained multibody models that are based on essentially any form of generalized coordinates. A spinning top with Euler parameter orientation coordinates is used as a model problem to analytically reduce Euler's equations of motion to ODEs. Numerical results using a fourth-order Nystrom integrator verify that accurate results are obtained, satisfying position, velocity, and acceleration constraints to computer precision. A computational algorithm for implementing the approach with state-of-the-art explicit numerical integrators is presented and used in solution of three examples, one planar and two spatial. Performance of the method in satisfying all three forms of kinematic constraint, based on error tolerances embedded in the formulation, is verified.


Author(s):  
Najmuddin Ahamad ◽  
Shiv Charan

In this paper we present fifth order Runge-Kutta method (RK5) for solving initial value problems of fourth order ordinary differential equations. In this study RK5 method is quite efficient and practically well suited for solving boundary value problems. All mathematical calculation performed by MATLAB software for better accuracy and result. The result obtained, from numerical examples, shows that this method more efficient and accurate. These methods are preferable to some existing methods because of their simplicity, accuracy and less computational cost involved.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2021 ◽  
Author(s):  
Friedrich Pfeiffer

Abstract Constraints in multibody systems are usually treated by a Lagrange I - method resulting in equations of motion together with the constraint forces. Going from non-minimal coordinates to minimal ones opens the possibility to project the original equations directly to the minimal ones, thus eliminating the constraint forces. The necessary procedure is described, a general example of combined machine-process dynamics discussed and a specific example given. For a n-link robot tracking a path the equations of motion are projected onto this path resulting in quadratic form linear differential equations. They define the space of allowed motion, which is generated by a polygon-system.


2021 ◽  
Vol 16 (4) ◽  
Author(s):  
Edward J. Haug

Abstract Topological and vector space attributes of Euclidean space are consolidated from the mathematical literature and employed to create a differentiable manifold structure for holonomic multibody kinematics and dynamics. Using vector space properties of Euclidean space and multivariable calculus, a local kinematic parameterization is presented that establishes the regular configuration space of a multibody system as a differentiable manifold. Topological properties of Euclidean space show that this manifold is naturally partitioned into disjoint, maximal, path connected, singularity free domains of kinematic and dynamic functionality. Using the manifold parameterization, the d'Alembert variational equations of multibody dynamics yield well-posed ordinary differential equations of motion on these domains, without introducing Lagrange multipliers. Solutions of the differential equations satisfy configuration, velocity, and acceleration constraint equations and the variational equations of dynamics, i.e., multibody kinematics and dynamics are embedded in these ordinary differential equations. Two examples, one planar and one spatial, are treated using the formulation presented. Solutions obtained are shown to satisfy all three forms of kinematic constraint to within specified error tolerances, using fourth-order Runge–Kutta numerical integration methods.


Algorithms ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 10 ◽  
Author(s):  
Nizam Ghawadri ◽  
Norazak Senu ◽  
Firas Adel Fawzi ◽  
Fudziah Ismail ◽  
Zarina Ibrahim

In this study, fifth-order and sixth-order diagonally implicit Runge–Kutta type (DIRKT) techniques for solving fourth-order ordinary differential equations (ODEs) are derived which are denoted as DIRKT5 and DIRKT6, respectively. The first method has three and the another one has four identical nonzero diagonal elements. A set of test problems are applied to validate the methods and numerical results showed that the proposed methods are more efficient in terms of accuracy and number of function evaluations compared to the existing implicit Runge–Kutta (RK) methods.


Sign in / Sign up

Export Citation Format

Share Document