scholarly journals Classification of 3T1R Parallel Manipulators Based on Their Wrench Graph

2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Semaan Amine ◽  
Ossama Mokhiamar ◽  
Stéphane Caro

This paper presents a classification of 3T1R parallel manipulators (PMs) based on the wrench graph. By using the theory of reciprocal screws, the properties of the three-dimensional projective space, the wrench graph, and the superbracket decomposition of Grassmann–Cayley algebra, six typical wrench graphs for 3T1R parallel manipulators are obtained along with their singularity conditions. Furthermore, this paper shows a way in which each of the obtained typical wrench graphs can be used in order to synthesize new 3T1R parallel manipulator architectures with known singularity conditions and with an understanding of their geometrical properties and assembly conditions.

Author(s):  
C. Gosselin

Abstract This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration on its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully-parallel manipulator.


Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Ste´phane Caro ◽  
Philippe Wenger ◽  
Cle´ment Gosselin

This paper deals with the singularity analysis of parallel manipulators with identical limb structures performing Scho¨nflies motions, namely, three independent translations and one rotation about an axis of fixed direction. The study is developed through the singularity analysis of the 4-RUU parallel manipulator. The 6 × 6 Jacobian matrix of such manipulators contains two lines at infinity, namely, two constraint moments, among its six Plu¨cker lines. The Grassmann-Cayley Algebra is used to obtain geometric singularity conditions. However, due to the presence of lines at infinity, the rank deficiency of the Jacobian matrix for the singularity conditions is not easy to grasp. Therefore, a wrench graph representation for some singularity conditions emphasizes the linear dependence of the Plu¨cker lines of the Jacobian matrix and highlights the correspondence between Grassmann-Cayley algebra and Grassmann geometry.


Author(s):  
Semaan Amine ◽  
Daniel Kanaan ◽  
Ste´phane Caro ◽  
Philippe Wenger

This paper presents a general approach to analyze the singularities of lower-mobility parallel manipulators with parallelogram joints. Using screw theory, the concept of twist graph is introduced and the twist graphs of two types of parallelogram joints are established in order to simplify the constraint analysis of the manipulators under study. Using Grassmann-Cayley Algebra, the geometric conditions associated with the dependency of six Plu¨cker vectors of finite and infinite lines in the 3-dimensional projective space are reformulated in the superbracket in order to derive the geometric conditions for parallel singularities. The methodology is applied to three lower-mobility parallel manipulators with parallelogram joints: the Delta-linear robot, the Orthoglide robot and the H4 robot. The geometric interpretations of the singularities of these robots are given.


2011 ◽  
Vol 35 (4) ◽  
pp. 515-528 ◽  
Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro ◽  
Philippe Wenger ◽  
Clément Gosselin

This paper deals with the singularity analysis of four degrees of freedom parallel manipulators with identical limb structures performing Schönflies motions, namely, three independent translations and one rotation about an axis of fixed direction. The 6 × 6 Jacobian matrix of such manipulators contains two lines at infinity among its six Plücker vectors. Some points at infinity are thus introduced to formulate the superbracket of Grassmann-Cayley algebra, which corresponds to the determinant of the Jacobian matrix. By exploring this superbracket, all the singularity conditions of such manipulators can be enumerated. The study is illustrated through the singularity analysis of the 4-RUU parallel manipulator.


1990 ◽  
Vol 112 (3) ◽  
pp. 331-336 ◽  
Author(s):  
C. Gosselin

This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration in its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully parallel manipulator.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


1952 ◽  
Vol 48 (3) ◽  
pp. 383-391
Author(s):  
T. G. Room

This paper falls into three sections: (1) a system of birational transformations of the projective plane determined by plane cubic curves of a pencil (with nine associated base points), (2) some one-many transformations determined by the pencil, and (3) a system of birational transformations of three-dimensional projective space determined by the elliptic quartic curves through eight associated points (base of a net of quadric surfaces).


Sign in / Sign up

Export Citation Format

Share Document