constraint analysis
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Anitrosa Innazent ◽  
D. Jacob ◽  
J. S. Bindhu ◽  
Brigit Joseph ◽  
K. N. Anith ◽  
...  

AbstractAdoption of an integrated farming system (IFS) is essential to achieve food and nutritional security in small and marginal holdings. Assessment of IFS to know the resource availability and socio-economic condition of the farm household, farm typology plays a critical role. In this regard, a sample survey of 200 marginal households practicing mixed crop-livestock agriculture was conducted during 2018–2019 at Southern Coastal Plains, which occupies 19,344 ha in Thiruvananthapuram district, Kerala, India. Farming system typology using multivariate statistical techniques of principal component analysis and cluster analysis characterized the diverse farm households coexisting within distinct homogenous farm types. Farming system typology identified four distinct farm types viz. resource constrained type-1 households with small land owned, high abundance of poultry, very low on-farm income, constituted 46.5%; resource endowed type-2 households oriented around fruit and vegetable, plantation crop, with a moderate abundance of large ruminant and poultry, high on-farm income, constituted 12.5%; resource endowed type-3 household oriented around food grain, extensive use of farm machinery, with a moderate abundance of large ruminant, low on-farm income, constituted 21.5%; and resource endowed type-4 household oriented around fodder, with high abundance of large ruminant, medium on-farm income, constituted 19.5% of sampled households. Constraint analysis using constraint severity index assessed the severity of constraints in food grain, horticulture, livestock, complementary and supplementary enterprises in each farm type, which allowed targeted farming systems interventions to be envisaged to overcome soil health problems, crops and animal production constraints. Farming system typology together with constraint analysis are therefore suggested as a practical framework capable of identifying type-specific farm households for targeted farming systems interventions.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1231
Author(s):  
Ning Chen ◽  
Yasheng Zhang ◽  
Wenhua Cheng

In order to avoid damage to service satellites and targets during space missions and improve safety and reliability, it is necessary to study how to eliminate or reduce the rotation of targets. This paper focused on a space detumbling robot and studied the space detumbling robot dynamics and robot arm deployment path planning. Firstly, a certain space detumbling robot with a ‘platform + manipulator + end effector’ configuration is proposed. By considering the end effector as a translational joint, the entire space detumbling robot is equivalent to a link system containing six rotating joints and three translational joints, and the detailed derivation process of the kinematic and dynamic model is presented. Then, ADAMS and MATLAB were used to simulate the model, and the MATLAB results were compared with the ADAMS results to verify the correctness of the model. After that, the robot arm deployment problem was analyzed in detail from the aspects of problem description, constraint analysis and algorithm implementation. An algorithm of robot arm deployment path planning based on the Bi-FMT* algorithm is proposed, and the effectiveness of the algorithm is verified by simulation.


Author(s):  
Agni Grandita Permata Sari

The Central Government and West Java Province are intensively issuing policies to increase village empowerment, especially since village funds were distributed in 2015. Although these funds have positive implications for increasing the number of BUMDes, in general, the impact of BUMDes has not been too significant for the increase of the village's original income (PADes). West Java Province as a province that is very aggressively launching programs for villages development does not have BUMDes with ‘Big’ and ‘Advanced’ status, and only one with ‘Mature’ status, namely BUMDes Niagara in Bandung Regency. This paper aims to know the management, to identify and to analyze the most influential actors, supporting and inhibiting factors, and the changes expected to improve the management of BUMDes Niagara in Bandung Regency. The method used is qualitative with an inductive approach. Data analysis used the Interpretive Structural Modeling (ISM) method. The results showed that the management of BUMDes Niagara was elitist in that the village head and BUMDes manager played a major role in the development of BUMDes. Furthermore, the constraint analysis shows that the low quality of human resources is the most dominant problem. On the other hand, the factor of village potential and the commitment of the village head are the supporting factors that are most decisive. The above conditions converge on the need for the involvement of other parties, especially the government in providing guidance and assistance to Niagara BUMDes.


2021 ◽  
Vol 126 ◽  
pp. 103666
Author(s):  
Dong Guan ◽  
Nan Yang ◽  
Jerry Lai ◽  
Ming-Fung Francis Siu ◽  
Xingjian Jing ◽  
...  

2021 ◽  
Author(s):  
Kamran Shahid

Future autonomous satellite repair missions would benefit from higher accuracy pose estimates of target satellites. Constraint analysis provides a sensitivity index which can be used as a registration accuracy predictor. It was shown that point cloud configurations with higher values of this index returned more accurate pose estimates than unstable configurations with lower index values. Registration tests were conducted on four satellite geometries using synthetic range data. These results elucidate a means of determining the optimal scanning area of a given satellite for registration with the Iterative Closest Point (ICP) algorithm to return a highly accurate pose estimate.


2021 ◽  
Author(s):  
Kamran Shahid

Future autonomous satellite repair missions would benefit from higher accuracy pose estimates of target satellites. Constraint analysis provides a sensitivity index which can be used as a registration accuracy predictor. It was shown that point cloud configurations with higher values of this index returned more accurate pose estimates than unstable configurations with lower index values. Registration tests were conducted on four satellite geometries using synthetic range data. These results elucidate a means of determining the optimal scanning area of a given satellite for registration with the Iterative Closest Point (ICP) algorithm to return a highly accurate pose estimate.


2021 ◽  
Author(s):  
Aradhana Choudhuri

The goal of this thesis is to develop a methodology for designing 3D target shapes for accurate LIDAR pose estimation. Scanned from a range of views, this shape can be attached to the surface of a spacecraft and deliver accurate pose scanned. It would act as an LIDAR- based analogue to fiducial markers placed on the surface and viewed by CCD camera(s). Continuum Shape Constraint Analysis (CSCA) which assesses shapes for pose estimation and measures the performance of the Iterative Closest Point (ICP) Algorithm is used as a shape design tool. CSCA directly assesses the sensitivity of pose error to variation in viewing direction. Three of the CSCA measures, Noise Amplification Index, Minimal Eigen-value and Expectivity Index, were compared, and Expectivity Index was shown to be the best index to use as shape design tool. Using CSCA and numerical simulations, a Cuboctahedron was shown to be an optimal shape which delivers an accurate pose when viewed from all angles and the nitial pose guess is close to the true poses. Separate from Constraint Analysis, the problem of shape ambiguity was addressed using numerical tools. The Cuboctahedron was modified in order to resolve shape ambiguity - the tendency of the ICP algorithm to converge with low registration error on a pose configuration geometrically identical, but actually different from a “true pose”. The numerical characteristics of geometrical ambiguity were studied, and a heuristic design methodology to reduce shape ambiguity was developed and is presented in this thesis. A Reduced Ambiguity Cuboctahedron is the resultant shape that delivers an accurate pose from all views and does not suffer from shape ambiguity. The shapes were subjected to simulation and experimental validation. They were manufactured using 3D Rapid Prototyper, and a NEPTEC Design Group TriDAR Scanner was used to obtain experimental data for three shapes: the Tetrahedron, Cuboctahedron, and reduced Ambiguity Cuboctahedron. The Tetrahedron, which has poorly constrained views, was included in the testing process as a comparison shape. The simulation and experimental results were congruent, and validated the design methodology and the designed shapes.


2021 ◽  
Author(s):  
Aradhana Choudhuri

The goal of this thesis is to develop a methodology for designing 3D target shapes for accurate LIDAR pose estimation. Scanned from a range of views, this shape can be attached to the surface of a spacecraft and deliver accurate pose scanned. It would act as an LIDAR- based analogue to fiducial markers placed on the surface and viewed by CCD camera(s). Continuum Shape Constraint Analysis (CSCA) which assesses shapes for pose estimation and measures the performance of the Iterative Closest Point (ICP) Algorithm is used as a shape design tool. CSCA directly assesses the sensitivity of pose error to variation in viewing direction. Three of the CSCA measures, Noise Amplification Index, Minimal Eigen-value and Expectivity Index, were compared, and Expectivity Index was shown to be the best index to use as shape design tool. Using CSCA and numerical simulations, a Cuboctahedron was shown to be an optimal shape which delivers an accurate pose when viewed from all angles and the nitial pose guess is close to the true poses. Separate from Constraint Analysis, the problem of shape ambiguity was addressed using numerical tools. The Cuboctahedron was modified in order to resolve shape ambiguity - the tendency of the ICP algorithm to converge with low registration error on a pose configuration geometrically identical, but actually different from a “true pose”. The numerical characteristics of geometrical ambiguity were studied, and a heuristic design methodology to reduce shape ambiguity was developed and is presented in this thesis. A Reduced Ambiguity Cuboctahedron is the resultant shape that delivers an accurate pose from all views and does not suffer from shape ambiguity. The shapes were subjected to simulation and experimental validation. They were manufactured using 3D Rapid Prototyper, and a NEPTEC Design Group TriDAR Scanner was used to obtain experimental data for three shapes: the Tetrahedron, Cuboctahedron, and reduced Ambiguity Cuboctahedron. The Tetrahedron, which has poorly constrained views, was included in the testing process as a comparison shape. The simulation and experimental results were congruent, and validated the design methodology and the designed shapes.


Author(s):  
Chuanyang Li ◽  
Jorge Angeles ◽  
Hongwei Guo ◽  
Huiyin Yan ◽  
Dewei Tang ◽  
...  

A symmetric, double-tripod multi-loop mechanism (DTMLM), for aerospace applications, is the subject of this paper. Its mobility and singularity are analyzed, while introducing a novel tool, the cell-division method for singularity analysis, applicable to multi-loop mechanisms. The key principle of this method lies in replacing the singularity analysis of the original multi-loop mechanism with: (1) that of an equivalent simpler parallel mechanism; (2) the constraint analysis between loops; and (3) the singularity analysis of simpler kinematic subchains. Then, the mechanism is transformed into a simpler, equivalent parallel mechanism with three identical kinematic subchains. Its mobility and singularity are analyzed based on screw algebra, which leads to a key conclusion about the geometric properties of this mechanism. Results show that: (a) the DTMLM has three degrees of freedom (dof), i.e., two rotational dof around two intersecting axes lying in the middle plane of the mechanism, and one translational dof along the normal to the said plane (2R1T); and (b) the singularities of the 3-RSR parallel mechanism are avoided in the DTMLM by means of prismatic joints, singularities in the DTMLM occurring on the boundary of its workspace. Thus, the DTMLM has a 2R1T mobility everywhere within its workspace. When a set of multi-loop mechanisms of this kind are stacked as modules to assemble a multi-stage manipulator for space applications, the modules can be designed so that, under paradigm operations, all individual loops operate within their workspace, safe from singularities.


Sign in / Sign up

Export Citation Format

Share Document