Determination of the Workspace of a Three-Degrees-of-Freedom Parallel Manipulator Using a Three-Dimensional Computer-Aided-Design Software Package and the Concept of Virtual Chains1

2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.

Author(s):  
Andrew Johnson ◽  
Xianwen Kong

Development of a new parallel manipulator can be very time consuming due to the traditional method of producing kinematic, dynamic and static calculation models and then evaluating them to determine aspects of the manipulator’s performance indices such as the mechanism’s workspace and singularity analysis. By extending the virtual chain approach to the type synthesis of parallel manipulators, this paper proposes a virtual-chain approach to the workspace analysis of parallel manipulators. This method is illustrated by producing and evaluating the workspace of several parallel robots including the well known DELTA robot by utilising the three-dimensional CAD software SolidWorks to produce a virtual prototype of a manipulator with an embedded virtual chain. The virtual chain represents the motion pattern of a manipulator’s end-effector and is very useful in the production of a graphical representation of the workspace of the manipulator. Using this approach, the link interferences and transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


Author(s):  
C. Gosselin

Abstract This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration on its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully-parallel manipulator.


Author(s):  
Y Lu ◽  
Y Shi ◽  
B Hu

To shape the workspace of some novel parallel manipulators (PMs) is significant. A novel computer-aided design (CAD) variation geometry approach is proposed to shape and solve the reachable workspace of some PMs with three to six degrees of freedom (DOFs). Some basic techniques are described for designing the simulation mechanism and solving the reachable workspace. The simulation mechanisms of some PMs with three to six DOFs are created. When varying the driving dimensions of the active legs in the given extent, the simulation mechanisms vary correspondingly, and the position components of the moving platform are solved automatically. By transferring the position solutions into spatial spline curves in the simulation mechanism, all the boundary surfaces of the workspace can be created and visualized dynamically. Comparing with analytic approaches for solving workspace, the CAD variation geometry approach is simple, straightforward, accurate, and repeatable.


2020 ◽  
Vol 18 (1) ◽  
pp. 079
Author(s):  
Badreddine Aboulissane ◽  
Larbi El Bakkali ◽  
Jalal El Bahaoui

This paper provides workspace determination and analysis based on the graphical technique of both spatial and planar parallel manipulators. The computation and analysis of workspaces will be carried out using the parameterization and three-dimensional representation of the workspace. This technique is implemented in CAD (Computer Aided Design) Software CATIA workbenches. In order to determine the workspace of the proposed manipulators, the reachable region by each kinematic chain is created as a volume/area; afterwards, the full reachable workspace is obtained by the application of a Boolean intersection function on the previously generated volumes/areas. Finally, the relations between the total workspace and the design parameters are simulated, and the Product Engineering Optimizer workbench is used to optimize the design variables in order to obtain a maximized workspace volume. Simulated annealing (SA) and Conjugate Gradient (CG) are considered in this study as optimization tools.


DYNA ◽  
2020 ◽  
Vol 87 (213) ◽  
pp. 129-139
Author(s):  
Carlos Andrés Mesa Montoya ◽  
Hector Fabio Quintero Riaza ◽  
Federico Gutiérrez Madrid

This paper addresses the kinematic structure and workspace analysis of a parallel manipulator with linear actuators considering two studies.The first one was based on a morphological synthesis in which a kinematic connections approach was implemented. The set of combinations of joints and links for the desired system and their linkage are illustrated. Finally, the development regarding the conceivable morphologyis detailed, providing three linear degrees of freedom between the mobile and fixed platforms. The second study presented the dimensional synthesis of the manipulator, considering a workspace required and an input transmission index. The geometrical design was based on the maximum inscribed workspace volume; the cylindrical shape radius inscribed on a workspace intersection is also exemplified. The geometric determination of the workspace for the manipulator was demonstrated using computer-aided design. A design result of the Delta as checked with the stiffness and condition indices.


1990 ◽  
Vol 112 (3) ◽  
pp. 331-336 ◽  
Author(s):  
C. Gosselin

This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration in its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully parallel manipulator.


Author(s):  
Yi Lu ◽  
Cong Cong ◽  
Chen Liwei ◽  
Peng Wang

It has been a significant and challenging issue to determine the elastic deformation of parallel manipulators for their precision analysis and control. A new method is proposed and studied for solving the elastic deformation of some parallel manipulators with linear active legs using computer-aided design variation geometry. First, an original simulation mechanism of a parallel manipulator is constructed; each of the vectors in the force transformation matrix of the parallel manipulators is constructed by this simulation mechanism. The active/constrained wrench and their pose are determined based on the Newton–Euler formulation. Second, the elastic deformed dimensions of the active legs are determined based on the elastic deformation equation and the active/constrained wrench. Third, a new simulation mechanism of this parallel manipulator is constructed by replacing the original dimensions of active legs with the deformed dimensions of active legs and the elastic deformations of parallel manipulators are solved using the pose difference between the original and new simulation mechanisms. Finally, two parallel manipulators are illustrated and their elastic deformations are solved and verified by both analytic approach and finite element method.


2018 ◽  
Vol 875 ◽  
pp. 71-76
Author(s):  
Victor Kryaskov ◽  
Andrey Vashurin ◽  
Anton Tumasov ◽  
Alexey Vasiliev

This paper is dedicated to the issues of designing of outriggers for avoidance of vehicle tilting during its stability tests. An analysis of existing types of outriggers was done by authors as well as legislative requirements on them. The reliable and well-timed operation of outriggers largely depends on the height of their positioning on a vehicle. In order to determine this important parameter a special methodic of determining the tipping angle of the vehicle with the use of computer-aided design (CAD) was composed by authors. The article also contains some main principles of strength analysis of the structure a very important part of which became the necessity of determination of coefficient of friction between the outrigger sliders and the supporting surface. This coefficient has a direct impact on the value of transverse forces appearing at the ends of outrigger beams.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Sign in / Sign up

Export Citation Format

Share Document