geometric singularity
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuma Hirakui ◽  
Takahiro Yajima

In this study, we geometrically analyze the relation between a point vortex system and deviation curvatures on the Jacobi field. First, eigenvalues of deviation curvatures are calculated from relative distances of point vortices in a three point vortex system. Afterward, based on the assumption of self-similarity, time evolutions of eigenvalues of deviation curvatures are shown. The self-similar motions of three point vortices are classified into two types, expansion and collapse, when the relative distances vary monotonously. Then, we find that the eigenvalues of self-similarity are proportional to the inverse fourth power of relative distances. The eigenvalues of the deviation curvatures monotonically convergent to zero for expansion, whereas they monotonically diverge for collapse, which indicates that the strengths of interactions between point vortices related to the time evolution of spatial geometric structure in terms of the deviation curvatures. In particular, for collapse, the collision point becomes a geometric singularity because the eigenvalues of the deviation curvature diverge. These results show that the self-similar motions of point vortices are classified by eigenvalues of the deviation curvature. Further, nonself-similar expansion is numerically analyzed. In this case, the eigenvalues of the deviation curvature are nonmonotonous but converge to zero, suggesting that the motion of the nonself-similar three point vortex system is also classified by eigenvalues of the deviation curvature.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 356
Author(s):  
A. Karozas ◽  
G. K. Leontaris ◽  
I. Tavellaris

Motivated by experimental measurements indicating deviations from the Standard Model predictions, we discuss F-theory-inspired models, which, in addition to the three chiral generations, contain a vector-like complete fermion family. The analysis takes place in the context of $SU(5)\times U(1)'$ GUT embedded in an $E_8$ covering group, which is associated with the (highest) geometric singularity of the elliptic fibration. In this context, the $U(1)'$ is a linear combination of four abelian factors subjected to the appropriate anomaly cancellation conditions. Furthermore, we require universal $U(1)'$ charges for the three chiral families and different ones for the corresponding fields of the vector-like representations. Under the aforementioned assumptions, we find 192 models that can be classified into five distinct categories with respect to their specific GUT properties. We exhibit representative examples for each such class and construct the superpotential couplings and the fermion mass matrices. We explore the implications of the vector-like states in low-energy phenomenology, including the predictions regarding the B-meson anomalies. The rôle of R-parity violating terms appearing in some particular models of the above construction is also discussed.


2017 ◽  
Vol 381 (34) ◽  
pp. 2772-2777 ◽  
Author(s):  
Z. Yoshida ◽  
T. Tokieda ◽  
P.J. Morrison

2015 ◽  
Vol 48 (2) ◽  
Author(s):  
Wojciech Domitrz ◽  
Goo Ishikawa ◽  
Shyuichi Izumiya

2015 ◽  
Vol 25 (04) ◽  
pp. 747-801 ◽  
Author(s):  
Kewei Zhang ◽  
Antonio Orlando ◽  
Elaine Crooks

We develop and apply the theory of lower and upper compensated convex transforms introduced in [K. Zhang, Compensated convexity and its applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 743–771] to define multiscale, parametrized, geometric singularity extraction transforms of ridges, valleys and edges of function graphs and sets in ℝn. These transforms can be interpreted as "tight" opening and closing operators, respectively, with quadratic structuring functions. We show that these geometric morphological operators are invariant with respect to translation, and stable under curvature perturbations, and establish precise locality and tight approximation properties for compensated convex transforms applied to bounded functions and continuous functions. Furthermore, we establish multiscale and Hausdorff stable versions of such transforms. Specifically, the stable ridge transforms can be used to extract exterior corners of domains defined by their characteristic functions. Examples of explicitly calculated prototype mathematical models are given, as well as some numerical experiments illustrating the application of these transforms to 2d and 3d objects.


2014 ◽  
Vol 2014 (1) ◽  
pp. 44-48
Author(s):  
S. E. Alexandrov ◽  
D. Vilotic ◽  
E. A. Lyamina

Sign in / Sign up

Export Citation Format

Share Document