Impact of Hydrofoil Material on Cavitation Inception and Desinence

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Eduard Amromin

Flow-induced vibration of hydrofoils affects pressure pulsations on their surfaces and influences cavitation inception and desinence. As these pulsations depend on the hydrofoil material, cavitation inception and desinence numbers for hydrofoils of the same shape made from different metals can be substantially different. This conclusion is based on the comparison of the multistep numerical analysis of fluid–structure interaction for hydrofoils Cav2003 with earlier obtained experimental data for them. The material impact on cavitation must be taken into account in future experiments.

Author(s):  
M. Kim ◽  
P. Hughes ◽  
R. A. Ainsworth

This paper provides an overview of International Atomic Energy Agency (IAEA) draft technical guidelines on Fluid-Structure Interaction (FSI), which is supporting document for IAEA Safety Standards aimed at providing method and practices. The technical guidelines are based on sections in codes and standards, more general documents on FSI and documents describing particular plant issues or problems. The technical guidelines recognise that FSI has led to a range of problems in a range of reactor types including: flow-induced vibration in light water reactor (LWR) steam generators under external loading including seismic loading; fretting of LWR heat exchangers with the fretting loading dependent on cross-flow velocity; seismic effects and fluid sloshing in liquid metal cooled faster breeder reactor (LMFBR); and water hammer. In addition to providing an overview description of the technical guidelines, the paper also describes the process followed to produce and obtain peer review of the document.


Author(s):  
Michael Scha¨fer ◽  
Saim Yigit ◽  
Marcus Heck

The paper deals with an implicit partitioned solution approach for the numerical simulation of fluid-structure interaction problems. The solution procedure involves the finite-volume flow solver FASTEST, the finite-element structural solver FEAP, and the coupling interface MpCCI. The method is verified and validated by comparisons with benchmark results and experimental data. Investigations concerning the influence of the grid movement technique and an underrelaxation on the performance of the method are presented.


Author(s):  
Mohammad A. Elyyan ◽  
Yeong-Yan Perng ◽  
Mai Doan

Flow-induced vibration (FIV) is one of the main reasons for subsea piping failure, where subsea pipes, which typically carry multiphase flow, experience large fluctuating forces. These fluctuating forces can induce severe vibrations leading to premature piping failure. This paper presents a transient numerical study of a typical subsea M-shape jumper pipe that is carrying a gas-liquid multiphase flow subject to a slug frequency of 4.4 Hz, starting from rest to include the start-up effect as part of the study. 3-D numerical simulations were used to capture the fluid-structure interaction (FSI) and estimate pipe deformations due to fluctuating hydrodynamic forces. In this paper, two FSI approaches were used to compute the pipe deformations, two-way coupled and one-way decoupled. Analysis of the results showed that decoupled (one-way) FSI approach overestimated the peak pipe deformation by about 100%, and showed faster decay of fluctuations than coupled (two-way) FSI analysis. The assessment of resonant risk due to FIV is also discussed.


Sign in / Sign up

Export Citation Format

Share Document