scholarly journals Self-Substitution and the Temperature Effects on the Electrochemical Performance in the High Voltage Cathode System LiMn1.5+xNi0.5−xO4 (x = 0.1)

Author(s):  
Yun Xu ◽  
Mingyang Zhao ◽  
Syed Khalid ◽  
Hongmei Luo ◽  
Kyle S. Brinkman

The high voltage cathode material, LiMn1.6Ni0.4O4, was prepared by a polymer-assisted method. The novelty of this work is the substitution of Ni with Mn, which already exists in the crystal structure instead of other isovalent metal ion dopants which would result in capacity loss. The electrochemical performance testing including stability and rate capability was evaluated. The temperature was found to impose a change on the valence and structure of the cathode materials. Specifically, manganese tends to be reduced at a high temperature of 800 °C and leads to structural changes. The manganese substituted LiMn1.5Ni0.5O4 (LMN) has proved to be a good candidate material for Li-ion battery cathodes displaying good rate capability and capacity retention. The cathode materials processed at 550 °C showed a stable performance with negligible capacity loss for 400 cycles.

Author(s):  
Haichang Zhang ◽  
Rui Zhang ◽  
Xingjiang Liu ◽  
Fei Ding ◽  
Chunsheng Shi ◽  
...  

High cost, complex synthesis routes and low yield are pressing challenges hindering the practical application of organic battery materials. Herein, copper(II) phthalocyanine (CuPc), one of the most frequently used blue...


Author(s):  
Himani Gupta ◽  
Shishir K. Singh ◽  
Nitin Srivastava ◽  
Dipika Meghnani ◽  
Rupesh K. Tiwari ◽  
...  

2017 ◽  
Vol 5 (46) ◽  
pp. 24292-24298 ◽  
Author(s):  
Yu Zheng ◽  
Lai Chen ◽  
Yuefeng Su ◽  
Jing Tan ◽  
Liying Bao ◽  
...  

A spinel structured interfacial framework was derived within a host layered crystal, resulting in excellent high-rate capability of Li-rich materials.


2015 ◽  
Vol 17 (8) ◽  
pp. 5942-5953 ◽  
Author(s):  
Anubhav Jain ◽  
Geoffroy Hautier ◽  
Shyue Ping Ong ◽  
Stephen Dacek ◽  
Gerbrand Ceder

High voltage and high thermal safety are desirable characteristics of cathode materials, but difficult to achieve simultaneously DFT calculations on >1400 Li ion battery cathode materials indicate a complex inverse relationship between voltage and thermal safety.


MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3513-3518 ◽  
Author(s):  
Taner Zerrin ◽  
Mihri Ozkan ◽  
Cengiz S. Ozkan

ABSTRACTIncreasing the operation voltage of LiCoO2 (LCO) is a direct way to enhance the energy density of the Li-ion batteries. However, at high voltages, the cycling stability degrades very fast due to the irreversible changes in the electrode structure, and formation of an unstable solid electrolyte interface layer. In this work, Ag thin film was prepared on commercial LCO cathode by using magnetron sputtering technique. Ag coated electrode enabled an improved electrochemical performance with a better cycling capability. After 100 cycles, Ag coated LCO delivers a discharge capacity of 106.3 mAh g-1 within 3 - 4.5 V at C/5, which is increased by 45 % compared to that of the uncoated LCO. Coating the electrode surface with Ag thin film also delivered an improved Coulombic efficiency, which is believed to be an indication of suppressed parasitic reactions at the electrode interface. This work may lead to new methods on surface modifications of LCO and other cathode materials to achieve high-capacity Li-ion batteries for high-voltage operations.


2019 ◽  
Vol 68 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Е. V. Makhonina ◽  
L. S. Pechen ◽  
V. V. Volkov ◽  
А. М. Rumyantsev ◽  
Yu. М. Koshtyal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document