Optimal Design of Self-Adaptive Fingers for Proprioceptive Tactile Sensing

2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Bruno Belzile ◽  
Lionel Birglen

The sense of touch has always been challenging to replicate in robotics, but it can provide critical information when grasping objects. Nowadays, tactile sensing in artificial hands is usually limited to using external sensors which are typically costly, sensitive to disturbances, and impractical in certain applications. Alternative methods based on proprioceptive measurements exist to circumvent these issues but they are designed for fully actuated systems. Investigating this issue, the authors previously proposed a tactile sensing technique dedicated to underactuated, also known as self-adaptive, fingers based on measuring the stiffness of the mechanism as seen from the actuator. In this paper, a procedure to optimize the design of underactuated fingers in order to obtain the most accurate proprioceptive tactile data is presented. Since this tactile sensing algorithm is based on a one-to-one relationship between the contact location and the stiffness measured at the actuator, the accuracy of the former is optimized by maximizing the range of values of the latter, thereby minimizing the effect of an error on the stiffness estimation. The theoretical framework of the analysis is first presented, followed by the tactile sensing algorithm, and the optimization procedure itself. Finally, a novel design is proposed which includes a hidden proximal phalanx to overcome shortcomings in the sensing capabilities of the proposed method. This paper demonstrates that relatively simple modifications in the design of underactuated fingers allow to perform accurate tactile sensing without conventional external sensors.

2014 ◽  
Vol 11 (2) ◽  
pp. 339-350
Author(s):  
Khadidja Bouali ◽  
Fatima Kadid ◽  
Rachid Abdessemed

In this paper a design methodology of a magnetohydrodynamic pump is proposed. The methodology is based on direct interpretation of the design problem as an optimization problem. The simulated annealing method is used for an optimal design of a DC MHD pump. The optimization procedure uses an objective function which can be the minimum of the mass. The constraints are both of geometrics and electromagnetic in type. The obtained results are reported.


Author(s):  
Abhishek Raj Sachan ◽  
Ankit Agrawal ◽  
Arpit Kochar ◽  

2021 ◽  
Vol 6 (01) ◽  
pp. 151-172
Author(s):  
Ubaldo Cella ◽  
Corrado Groth ◽  
Stefano Porziani ◽  
Alberto Clarich ◽  
Francesco Franchini ◽  
...  

Abstract The fluid dynamic design of hydrofoils involves most of the typical difficulties of aeronautical wings design with additional complexities related to the design of a device operating in a multiphase environment. For this reason, “high fidelity” analysis solvers should be, in general, adopted also in the preliminary design phase. In the case of modern fast foiling sailing yachts, the appendages accomplish both the task of lifting up the boat and to make possible upwind sailing by contributing balance to the sail side force and the heeling moment. Furthermore, their operative design conditions derive from the global equilibrium of forces and moments acting on the system which might vary in a very wide range of values. The result is a design problem defined by a large number of variables operating in a wide design space. In this scenario, the device performing in all conditions has to be identified as a trade-off among several conflicting requirements. One of the most efficient approaches to such a design challenge is to combine multi-objective optimization strategies with experienced aerodynamic design. This paper presents a numerical optimization procedure suitable for foiling multihulls. As a proof of concept, it reports, as an application, the foils design of an A-Class catamaran. The key point of the method is the combination of opportunely developed analytical models of the hull forces with high fidelity multiphase analyses in both upwind and downwind sailing conditions. The analytical formulations were tuned against a database of multiphase analyses of a reference demihull at several attitudes and displacements. An aspect that significantly contributes to both efficiency and robustness of the method is the approach adopted to the geometric parametrization of the foils which was implemented by a mesh morphing technique based on Radial Basis Functions.


1992 ◽  
Vol 44 (4) ◽  
pp. 735-741 ◽  
Author(s):  
G.E Cameron ◽  
C.-M Chan ◽  
Lei Xu ◽  
D.E Grierson

Sign in / Sign up

Export Citation Format

Share Document