tactile sensing
Recently Published Documents


TOTAL DOCUMENTS

924
(FIVE YEARS 212)

H-INDEX

52
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Momoko Sagara ◽  
Lisako Nobuyama ◽  
Kenjiro Takemura

Abstract Tactile sensing has attracted significant attention as a tactile quantitative evaluation method because the tactile sensation is an important factor while evaluating consumer products. While the human tactile perception mechanism has nonlinearity, previous studies have often developed linear regression models. In contrast, this study proposes a nonlinear tactile estimation model that can estimate sensory evaluation scores from physical measurements. We extracted features from the vibration data obtained by a tactile sensor based on the perceptibility of mechanoreceptors. In parallel, a sensory evaluation test was conducted using 10 evaluation words. Then, the relationship between the extracted features and the tactile evaluation results was modeled using linear/nonlinear regressions. The best model was concluded by comparing the mean squared error between the model predictions and the actual values. The result implies that there are multiple evaluation words suitable for adopting nonlinear regression models, and the average error was 43.8% smaller than that of building only linear regression models.


2022 ◽  
Vol 8 ◽  
Author(s):  
Wael Othman ◽  
Zhi-Han A. Lai ◽  
Carlos Abril ◽  
Juan S. Barajas-Gamboa ◽  
Ricard Corcelles ◽  
...  

As opposed to open surgery procedures, minimally invasive surgery (MIS) utilizes small skin incisions to insert a camera and surgical instruments. MIS has numerous advantages such as reduced postoperative pain, shorter hospital stay, faster recovery time, and reduced learning curve for surgical trainees. MIS comprises surgical approaches, including laparoscopic surgery, endoscopic surgery, and robotic-assisted surgery. Despite the advantages that MIS provides to patients and surgeons, it remains limited by the lost sense of touch due to the indirect contact with tissues under operation, especially in robotic-assisted surgery. Surgeons, without haptic feedback, could unintentionally apply excessive forces that may cause tissue damage. Therefore, incorporating tactile sensation into MIS tools has become an interesting research topic. Designing, fabricating, and integrating force sensors onto different locations on the surgical tools are currently under development by several companies and research groups. In this context, electrical force sensing modality, including piezoelectric, resistive, and capacitive sensors, is the most conventionally considered approach to measure the grasping force, manipulation force, torque, and tissue compliance. For instance, piezoelectric sensors exhibit high sensitivity and accuracy, but the drawbacks of thermal sensitivity and the inability to detect static loads constrain their adoption in MIS tools. Optical-based tactile sensing is another conventional approach that facilitates electrically passive force sensing compatible with magnetic resonance imaging. Estimations of applied loadings are calculated from the induced changes in the intensity, wavelength, or phase of light transmitted through optical fibers. Nonetheless, new emerging technologies are also evoking a high potential of contributions to the field of smart surgical tools. The recent development of flexible, highly sensitive tactile microfluidic-based sensors has become an emerging field in tactile sensing, which contributed to wearable electronics and smart-skin applications. Another emerging technology is imaging-based tactile sensing that achieved superior multi-axial force measurements by implementing image sensors with high pixel densities and frame rates to track visual changes on a sensing surface. This article aims to review the literature on MIS tactile sensing technologies in terms of working principles, design requirements, and specifications. Moreover, this work highlights and discusses the promising potential of a few emerging technologies towards establishing low-cost, high-performance MIS force sensing.


2021 ◽  
Author(s):  
Satoshi Konishi ◽  
Fuminari Mori ◽  
Yugo Kakehi ◽  
Ayano Shimizu ◽  
Fumiya Sano ◽  
...  

Abstract Human-robot interaction technology has contributed to improving sociality for humanoid robots. At scales far from human scales, a microrobot can interact with an environment in a small world. Microsensors have been applied to measurement of forces by flying or walking insects. Meanwhile, most previous works focused on the measurement of the behavior of insects. Here, we propose microrobot-insect interactions by soft microfingers integrated with artificial muscle actuators and tactile sensors, which has been developed for a haptic teleoperation robot system. A soft pneumatic balloon actuator acts as the artificial muscle, and a flexible strain sensor using a liquid metal provides tactile sensing. Force interaction between a pill bug and the microfinger could be accomplished. The microfiger (12 mm × 3 mm × 490 µm) can move and touch an insect, and it can detect reaction force from an insect. The measured reaction force from the legs of a pill bug as a representative insect was less than 10 mN. Our results demonstrate the potential of microfinger-insect interactions in a small world. We anticipate that our results will lead to novel human-environment interaction.


2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Min Cai ◽  
Zhongdong Jiao ◽  
Shuang Nie ◽  
Chengjun Wang ◽  
Jun Zou ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8339
Author(s):  
Patrick Lynch ◽  
Michael F. Cullinan ◽  
Conor McGinn

A robot’s ability to grasp moving objects depends on the availability of real-time sensor data in both the far-field and near-field of the gripper. This research investigates the potential contribution of tactile sensing to a task of grasping an object in motion. It was hypothesised that combining tactile sensor data with a reactive grasping strategy could improve its robustness to prediction errors, leading to a better, more adaptive performance. Using a two-finger gripper, we evaluated the performance of two algorithms to grasp a ball rolling on a horizontal plane at a range of speeds and gripper contact points. The first approach involved an adaptive grasping strategy initiated by tactile sensors in the fingers. The second strategy initiated the grasp based on a prediction of the position of the object relative to the gripper, and provided a proxy to a vision-based object tracking system. It was found that the integration of tactile sensor feedback resulted in a higher observed grasp robustness, especially when the gripper–ball contact point was displaced from the centre of the gripper. These findings demonstrate the performance gains that can be attained by incorporating near-field sensor data into the grasp strategy and motivate further research on how this strategy might be expanded for use in different manipulator designs and in more complex grasp scenarios.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Uikyum Kim ◽  
Dawoon Jung ◽  
Heeyoen Jeong ◽  
Jongwoo Park ◽  
Hyun-Mok Jung ◽  
...  

AbstractRobotic hands perform several amazing functions similar to the human hands, thereby offering high flexibility in terms of the tasks performed. However, developing integrated hands without additional actuation parts while maintaining important functions such as human-level dexterity and grasping force is challenging. The actuation parts make it difficult to integrate these hands into existing robotic arms, thus limiting their applicability. Based on a linkage-driven mechanism, an integrated linkage-driven dexterous anthropomorphic robotic hand called ILDA hand, which integrates all the components required for actuation and sensing and possesses high dexterity, is developed. It has the following features: 15-degree-of-freedom (20 joints), a fingertip force of 34N, compact size (maximum length: 218 mm) without additional parts, low weight of 1.1 kg, and tactile sensing capabilities. Actual manipulation tasks involving tools used in everyday life are performed with the hand mounted on a commercial robot arm.


Nano Energy ◽  
2021 ◽  
pp. 106826
Author(s):  
Aiping Li ◽  
Hsin-Hsuan Ho ◽  
Snigdha Roy Barman ◽  
Sangmin Lee ◽  
Fei Gao ◽  
...  

Small Methods ◽  
2021 ◽  
pp. 2101051
Author(s):  
Qikun Wei ◽  
Guorui Chen ◽  
Hong Pan ◽  
Zongbiao Ye ◽  
Christian Au ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document