scholarly journals A Novel Design Procedure for Optimal Design of CFS Compression Members

Author(s):  
Abhishek Raj Sachan ◽  
Ankit Agrawal ◽  
Arpit Kochar ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


Robotica ◽  
2011 ◽  
Vol 30 (7) ◽  
pp. 1041-1048 ◽  
Author(s):  
Donghun Lee ◽  
Jongwon Kim ◽  
TaeWon Seo

SUMMARYWe present a new numerical optimal design for a redundant parallel manipulator, the eclipse, which has a geometrically symmetric workspace shape. We simultaneously consider the structural mass and design efficiency as objective functions to maximize the mass reduction and minimize the loss of design efficiency. The task-oriented workspace (TOW) and its partial workspace (PW) are considered in efficiently obtaining an optimal design by excluding useless orientations of the end-effector and by including just one cross-sectional area of the TOW. The proposed numerical procedure is composed of coarse and fine search steps. In the coarse search step, we find the feasible parameter regions (FPR) in which the set of parameters only satisfy the marginal constraints. In the fine search step, we consider the multiobjective function in the FPR to find the optimal set of parameters. In this step, fine search will be kept until it reaches the optimal set of parameters that minimize the proposed objective functions by continuously updating the PW in every iteration. By applying the proposed approach to an eclipse-rapid prototyping machine, the structural mass of the machine can be reduced by 8.79% while the design efficiency is increased by 6.2%. This can be physically interpreted as a mass reduction of 49 kg (the initial structural mass was 554.7 kg) and a loss of 496 mm3/mm in the workspace volume per unit length. The proposed optimal design procedure could be applied to other serial or parallel mechanism platforms that have geometrically symmetric workspace shapes.


2016 ◽  
Vol 30 (6) ◽  
pp. 2615-2625 ◽  
Author(s):  
Oguz Dogan ◽  
Fatih Karpat ◽  
Celalettin Yuce ◽  
Necmettin Kaya ◽  
Nurettin Yavuz ◽  
...  

2003 ◽  
Vol 125 (3) ◽  
pp. 593-601 ◽  
Author(s):  
B. Demeulenaere ◽  
J. De Schutter

Traditionally, cam-follower systems are designed by assuming a constant camshaft speed. Nevertheless, all cam-follower systems, especially high-speed systems, exhibit some camshaft speed fluctuation (despite the presence of a flywheel) which causes the follower motions to be inaccurate. This paper therefore proposes a novel design procedure that explicitly takes into account the camshaft speed variation. The design procedure assumes that (i) the cam-follower system is conservative and (ii) all forces are inertial. The design procedure is based on a single design choice, i.e., the amount of camshaft speed variation, and yields (i) cams that compensate for the inertial dynamics for any period of motion and (ii) a camshaft flywheel whose (small) inertia is independent of the period of motion. A design example shows that the cams designed in this way offer the following advantages, even for non-conservative, non-purely inertial cam-follower systems: (i) more accurate camshaft motion despite a smaller flywheel, (ii) lower motor torques, (iii) more accurate follower motions, with fewer undesired harmonics, and (iv) a camshaft motion spectrum that is easily and robustly predictable.


2007 ◽  
Vol 345-346 ◽  
pp. 335-338
Author(s):  
Hye Jin Lee ◽  
Nak Kyu Lee ◽  
Hyoung Wook Lee

In this paper, Experimental results on the measurement of mechanical properties of fine patterns in the MEMS structure are described. The mechanical properties of embossing patterns on metallic thin foil is measured using the nano indentation system, that is developed by Korea Institute of Industrial Technology(KITECH). These micro embossing patterns are fabricated using CIP(Cold Isostatic Press) process on micro metallic thin foils(Al-1100) that are made by rolling process. These embossing patterned metallic thin foils(Al-1100) are used in the reflecting plate of BLU(Back Light Unit) and electrical/mechanical MEMS components. If these mechanical properties of fine patterns are utilized in a design procedure, the optimal design can be achieved in aspects of reliability as well as economy.


VLSI Design ◽  
1994 ◽  
Vol 2 (3) ◽  
pp. 185-198
Author(s):  
Chien-In Henry Chen

An efficient, unified algorithm, Advanced Two-Phase Cluster Partitioning, is proposed for automated synthesis of pseudo-exhaustive test generator for Built-In Self-Test (BIST) design. A prototype of the algorithm, Two-Phase Cluster Partitioning, has been proposed and the hierarchical design procedure is computationally efficient and produces test generation circuitry with low hardware overhead. However, in certain worst case, the algorithm may generate a sub-optimal design which requires more test patterns and/or hardware overhead. In order to generate a globally optimal design, further improvement of two-phase algorithm can be achieved by expanding the design space for the formation of linear sum so that the number of test signals required for pseudo-exhaustive testing can be reduced. We demonstrate the effectiveness of our approach by presenting detailed comparisons of our results against those that would be obtained by existing techniques.


2015 ◽  
Vol 101 ◽  
pp. 677-697 ◽  
Author(s):  
Daniele Losanno ◽  
Mariacristina Spizzuoco ◽  
Giorgio Serino

Sign in / Sign up

Export Citation Format

Share Document