scholarly journals Posing Multibody Dynamics With Friction and Contact as a Differential Complementarity Problem

Author(s):  
Dan Negrut ◽  
Radu Serban ◽  
Alessandro Tasora

This technical brief revisits the method outlined in Tasora and Anitescu 2011 [“A Matrix-Free Cone Complementarity Approach for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics,” Comput. Methods Appl. Mech. Eng., 200(5–8), pp. 439–453], which was introduced to solve the rigid multibody dynamics problem in the presence of friction and contact. The discretized equations of motion obtained here are identical to the ones in Tasora and Anitescu 2011 [“A Matrix-Free Cone Complementarity Approach for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics,” Comput. Methods Appl. Mech. Eng., 200(5–8), pp. 439–453]; what is different is the process of obtaining these equations. Instead of using maximum dissipation conditions as the basis for the Coulomb friction model, the approach detailed uses complementarity conditions that combine with contact unilateral constraints to augment the classical index-3 differential algebraic equations of multibody dynamics. The resulting set of differential, algebraic, and complementarity equations is relaxed after time discretization to a cone complementarity problem (CCP) whose solution represents the first-order optimality condition of a quadratic program with conic constraints. The method discussed herein has proven reliable in handling large frictional contact problems. Recently, it has been used with promising results in fluid–solid interaction applications. Alas, this solution is not perfect, and it is hoped that the detailed account provided herein will serve as a starting point for future improvements.

Author(s):  
D. S. Bae ◽  
J. M. Han ◽  
J. H. Choi

Abstract A convenient implementation method for constrained flexible multibody dynamics is presented by introducing virtual rigid body and joint. The general purpose program for rigid and flexible multibody dynamics consists of three major parts of a set of inertia modules, a set of force modules, and a set of joint modules. Whenever a new force or joint module is added to the general purpose program, the modules for the rigid body dynamics are not reusable for the flexible body dynamics. Consequently, the corresponding modules for the flexible body dynamics must be formulated and programmed again. Since the flexible body dynamics handles more degrees of freedom than the rigid body dynamics does, implementation of the module is generally complicated and prone to coding mistakes. In order to overcome these difficulties, a virtual rigid body is introduced at every joint and force reference frames. New kinematic admissibility conditions are imposed on two body reference frames of the virtual and original bodies by introducing a virtual flexible body joint. There are some computational overheads due to the additional bodies and joints. However, since computation time is mainly depended on the frequency of flexible body dynamics, the computational overhead of the presented method could not be a critical problem, while implementation convenience is dramatically improved.


2012 ◽  
Vol 2012.25 (0) ◽  
pp. 204-205
Author(s):  
Yohei NIWA ◽  
Yasuhiro KAJIMA ◽  
Shuji OGATA ◽  
Miyabi HIYAMA ◽  
Ryo KOBAYASHI ◽  
...  

Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2015 ◽  
Vol 69 ◽  
pp. 40-44
Author(s):  
H.M. Yehia ◽  
E. Saleh ◽  
S.F. Megahid

2014 ◽  
Vol 10 (2) ◽  
pp. e1003456 ◽  
Author(s):  
Pascal Carrivain ◽  
Maria Barbi ◽  
Jean-Marc Victor

1986 ◽  
Vol 54 (7) ◽  
pp. 585-586
Author(s):  
Stephen F. Felszeghy

Sign in / Sign up

Export Citation Format

Share Document