coulomb model
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 36)

H-INDEX

11
(FIVE YEARS 4)

2022 ◽  
Vol 961 (1) ◽  
pp. 012039
Author(s):  
Hind A Akram ◽  
Miami M Hilal ◽  
Mohammed Y Fattah

Abstract Roads are utilized by many vehicle kinds and heavy vehicles among these may be seen as the most essential for cargo loading, causing paving failure and increasing expenses for rehabilitation and maintenance. In this study, in analyzing a finite element employing Abaqus 6.14, composite effects for wheel loads and temperature were addressed. The asphalt layer was designed as an elastic material, while the base and sub-bases were modeled according to the Mohr coulomb model like an elastic material. And studying the impact of wheel loads on flexible pavement settlement and the main output of analyzing pavement structure is almost represented by the vertical stresses and the surface deformation which are considered as the critical response point. A truck type 2S-2 was tried with two thicknesses of asphalt layer 140 mm and 250 mm and considering that base and subbase layer thicknesses remained constant so it does not affect the variation of displacement. It was found that the increase of asphalt layer thickness from 140 mm to 250 mm leads to a decrease in the vertical displacement of about 0.59% and studied the effect of modified asphalt with polymer and how it effect pavement vertical displacement with an obvious reduction from 0.590 mm to 0.265 mm under the repeated load of 36 ton and The vertical stress decreased from 5.036 kPa to 1.899 kPa


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 138
Author(s):  
Salah B. Doma ◽  
Mahmoud A. Salem ◽  
Kalidas D. Sen

The energy eigenvalues of the ground state helium atom and lowest two excited states corresponding to the configurations 1s2s embedded in the plasma environment using Hulthén, Debye–Hückel and exponential cosine screened Coulomb model potentials are investigated within the variational Monte Carlo method, starting with the ultracompact trial wave functions in the form of generalized Hylleraas–Kinoshita functions and Guevara–Harris–Turbiner functions. The Lagrange mesh method calculations of energy are reported for the He atom in the ground and excited 1S and 3S states, which are in excellent agreement with the variational Monte Carlo results. Interesting relative ordering of eigenvalues are reported corresponding to the different screened Coulomb potentials in the He ground and excited electronic states, which are rationalized in terms of the comparison theorem of quantum mechanics.


2021 ◽  
Vol 16 (2) ◽  
pp. 87-103
Author(s):  
Bousbia Nawel ◽  
Messast Salah ◽  
Houssou Noura

Abstract The construction and loading of deep foundations (piles) of high-rise buildings causes a considerable effect in terms of stresses and deformation and requires assessing their impact on the response of adjacent tunnels to deformations, particularly for pile foundations, which are often constructed in locations very close to existing tunnels. The execution process for piles structures generates displacements, stresses, and forces, which are transferred through the piles’ soil surrounding a nearby existing tunnel. The research presented in this paper has led to a significantly improved understanding of pile-tunnel interaction problem. It is crucial for the analysis of the impact of the pile construction on an existing tunnel. The treated topic appears in a setting of an urban environment, where we construct numerous profound foundations, sometimes in contact or adjacent to a. In this paper, the response of the existing tunnel under constructed pile process is studied. Numerical modeling was carried out using Plaxis3D software in which the Mohr-Coulomb Model (MC) has been used for modeling, while the piles/ tunnels are modeled as a linear elastic material. Furthermore, a parametric study is conducted, and its cases are investigated. The displacements and the stresses generated on the tunnel lining decreases with the increase in relative distance between pile and tunnel (spacing), the location/length of the pile from the tunnel, the pile diameter, the number of piles. We have also identified two geometrical parameters of the tunnel: shape section and thickness lining which play a prominent role in the interaction between an existing tunnel and a new pile to excavate.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2139
Author(s):  
Ruofan Wang ◽  
Feitao Zeng ◽  
Li Li

The compressibility of mining backfill governs its resistance to the closure of surrounding rock mass, which should be well reflected in numerical modeling. In most numerical simulations of backfill, the Mohr–Coulomb elasto-plastic model is used, but is constantly criticized for its poor representativeness to the mechanical response of geomaterials. Finding an appropriate constitutive model to better represent the compressibility of mining backfill is critical and necessary. In this paper, Mohr–Coulomb elasto-plastic model, double-yield model, and Soft Soil model are briefly recalled. Their applicability to describing the backfill compressibility is then assessed by comparing numerical and experimental results of one-dimensional consolidation and consolidated drained triaxial compression tests made on lowly cemented backfills available in the literature. The comparisons show that the Soft Soil model can be used to properly describe the experimental results while the application of the Mohr–Coulomb model and double-yield model shows poor description on the compressibility of the backfill submitted to large and cycle loading. A further application of the Soft Soil model to the case of a backfilled stope overlying a sill mat shows stress distributions close to those obtained by applying the Mohr–Coulomb model when rock wall closure is absent. After excavating the underlying stope, rock wall closure is generated and exercises compression on the overlying backfill. Compared to the results obtained by applying the Soft Soil model, an application of the Mohr–Coulomb model tends to overestimate the stresses in the backfill when the mine depth is small and underestimate the stresses when the mine depth is large due to the poor description of fill compressibility. The Soft Soil model is recommended to describe the compressibility of uncemented or lightly cemented backfill with small cohesions under external compressions associated with rock wall closure.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Chuan-Yi Sui ◽  
Yu-Sheng Shen ◽  
Yu-Min Wen ◽  
Bo Gao

To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.


2021 ◽  
Vol 4 (2) ◽  
pp. 34
Author(s):  
Diana Bardhi

The scope of this study was to compare various stability evaluation methods. Accordingly, most common LE approaches were compared with the advanced LE (M‐P) method. Similarly, the differences in FOS computed from LE and FE analyses were compared based on a simple slope considering various load cases. In addition, two real slopes in a case study were analysed for the recorded minimum‐maximum GWT, pseudo‐static and dynamic conditions. Moreover, the stability evaluations of these slopes were based on both LE (M‐P) and FE (PLAXIS) calculation approaches, which both utilized shear strength parameters from advanced triaxle tests. Similarly, Mohr‐Coulomb model was applied in both approaches. The following conclusions are hence derived based on the reported work on both idealized and real slopes. To fulfil one of the aims of the study, the LE based methods are compared based on the factor of safety (FOS) obtained for various load combinations. The comparison is mainly based on simplified slope geometry and assumed input parameters. Among the LE methods, the Bishop simplified (BS), Janbu simplified (JS) and Janbu GPS methods are compared with the Morgenstern‐Price method (M‐PM). These LE methods are well established for many years, and thus some of them are still commonly used in practice for stability analysis. Moreover, the M‐PM has been compared with results from the FE analyses. Compared with theFE (PLAXIS) analyses, the LE (M‐PM) analyses may estimate 5 – 14percent higher FOS, depending on the conditions of a dry slope and a fully saturated slope with hydrostatic pore pressure distributions. For fully saturated conditions in the slope, inaccurate computation of stresses in LE methods may have resulted in larger difference in the computed FOS. Since, the FE software is based on stress‐strain relationship, stress redistributions are surely better computed even for a complicated problem. This has been found one of the advantages in FE simulations. A parameter study shows that the application of a positive dilatancy angle in FE analysis can significantly improve the FOS (4 ‐ 10percent). On contrast, the shear surface optimization in LE (M‐PM in SLOPE/W) analysis results in lower FOS, and thus minimizing the difference in FOS compared with FE analysis


2021 ◽  
Vol 11 (19) ◽  
pp. 9251
Author(s):  
Ning Li ◽  
Biao Ma ◽  
Hao Wang

The constitutive model is the crucial part for the finite element analyses. To study the elasto-plastic properties of unbound granular materials (UGMs) under repeated vehicular loads, an elasto-plastic constitutive model called revised spatially mobilized plane (SMP) was proposed and validated. In this study, the revised SMP model was used for the plastic strain analyses of a typical three-layer pavement structure. To make comparisons, the Mohr-Coulomb and Druck-Prager models were employed for the numerical computation. The results show that plastic tensile and compressive strains in the horizontal and vertical directions appear on the top surface of UGM using the revised SMP model, but no plastic strains are produced by the Mohr-Coulomb and Druck-Prager models. The distribution of plastic strains in the revised SMP model had a good relationship with the actual loading areas under the vehicular loading, which related to the rutting. With the Mohr-Coulomb and Druck-Prage models, a great plastic strain was produced during the first several loading cycles and hardly increased in the following loading cycles, while the plastic strain in the revised SMP model presented an obvious increasing tendency with increased loading cycles. The predicted permanent deformations of the revised SMP, Mohr-Coulomb and Druck-Prage models were 0.557 mm, 0.78 mm and 0.155 mm, respectively. Our work reveals that the Mohr-Coulomb model may over-predict and Druck-Prage model may under-predict the rutting of pavement in early loading stage and the results proved that the revised SMP model had advantages in the description of the plastic strain of UMG under repeated loads.


2021 ◽  
Vol 9 ◽  
Author(s):  
Weibin Yang ◽  
Fulei Wang ◽  
Yongbo Tie ◽  
Dongpo Wang ◽  
Chaojun Ouyang

On August 21, 2020, a landslide occurred in Zhonghai village of Hanyuan County, Sichuan Province, China. The landslide is triggered by two successive rounds of heavy rainfall. This landslide can be clearly divided into an initial landslide and a main landslide. The main landslide is activated by the intense impact and overloading of the initial landslide. The depth-integrated continuum method is adopted to simulate the dynamic process. Due to the complicated failure process, it is found that there is no proper unified parameters in Coulomb model which could well reproduce the two successive landslides. It implies that the dynamic process of landslides is highly associated with the characteristics of sliding bodies. Here, an implement of variable frictional coefficients for different parts is proposed and the parameters are calibrated. It is demonstrated that results from numerical modeling match well with the field investigation. The complicated landslides in two different stage can both be efficiently revealed by depth-integrated continuum modeling.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2021 ◽  
Vol 30 ◽  
pp. 69-75
Author(s):  
Tereza Poklopová ◽  
Veronika Pavelcová ◽  
Michal Šejnoha

This paper revisits the issue of a potential substitutions of the Hoek-Brown failure model by the standard Mohr-Coulomb model in the stability analysis of rock masses. The derivation of equivalent shear strength parameters of the Mohr-Coulomb proposed by Hoek et al. [1] is addressed with emphases on the suitable range of stresses for which the equivalence of the two failure criteria applies. To that end, a simple numerical analysis of the oedometric test is carried out. It is seen that a correct choice of the upper limit of the minimum compressive principal stress is crucial for the Mohr-Coulomb model to provide predictions comparable to the Hoek-Brown model. This issue is addressed next in the light of the solution of slope stability problem. All the presented results were derived with the help of the GEO5 FEM finite element software [2].


Sign in / Sign up

Export Citation Format

Share Document