Finite Element Analysis of Composite Offshore Wind Turbine Blades Under Operating Conditions

Author(s):  
M. Tarfaoui ◽  
M. Nachtane ◽  
H. Boudounit

Abstract World energy demand has increased immediately and is expected to continue to grow in the foreseeable future. Therefore, an overall change of energy consumption continuously from fossil fuels to renewable energy sources, and low service and maintenance price are the benefits of using renewable energies such as using wind turbines as an electricity generator. In this context, offshore wind power refers to the development of wind parks in bodies of water to produce electricity from wind. Better wind speeds are available offshore compared to on land, so offshore wind power's contribution in terms of electricity supplied is higher. However, these structures are very susceptible to degradation of their mechanical properties considering various hostile loads. The scope of this work is the study of the damage noticed in full-scale 48 m fiberglass composite blades for offshore wind turbine. In this paper, the most advanced features currently available in finite element (FE) abaqus/Implicit have been employed to simulate the response of blades for a sound knowledge of the mechanical behavior of the structures and then localize the susceptible sections.

2019 ◽  
Vol 44 (2) ◽  
pp. 168-180 ◽  
Author(s):  
Hicham Boudounit ◽  
Mostapha Tarfaoui ◽  
Dennoun Saifaoui ◽  
Mourad Nachtane

Wind energy is one among the most promising renewable energy sources, and hence there is fast growth of wind energy farm implantation over the last decade, which is expected to be even faster in the coming years. Wind turbine blades are complex structures considering the different scientific fields involved in their study. Indeed, the study of blade performance involves fluid mechanics (aerodynamic study), solids mechanics (the nature of materials, the type of solicitations …), and the fluid coupling structure (IFS). The scope of the present work is to investigate the mechanical performances and structural integrity of a large offshore wind turbine blade under critical loads using blade element momentum. The resulting pressure was applied to the blade by the use of a user subroutine “DLOAD” implemented in ABAQUS finite element analysis software. The main objective is to identify and predict the zones which are sensitive to damage and failure as well as to evaluate the potential of composite materials (carbon fiber and glass fiber) and their effect on reduction of rotor’s weight, as well as the increase of resistance to wear, and stiffness.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
M. Tarfaoui ◽  
O. R. Shah ◽  
M. Nachtane

In order to obtain an optimal design of composite offshore wind turbine blade, take into account all the structural properties and the limiting conditions applied as close as possible to real cases. This work is divided into two stages: the aerodynamic design and the structural design. The optimal blade structural configuration was determined through a parametric study by using a finite element method. The skin thickness, thickness and width of the spar flange, and thickness, location, and length of the front and rear spar web were varied until design criteria were satisfied. The purpose of this article is to provide the designer with all the tools required to model and optimize the blades. The aerodynamic performance has been covered in this study using blade element momentum (BEM) method to calculate the loads applied to the turbine blade during service and extreme stormy conditions, and the finite element analysis was performed by using abaqus code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear finite element analysis using mean values for the material properties and the failure criteria of Hashin to predict failure modes in large structures and to identify the sensitive zones.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
V. García ◽  
L. Vargas ◽  
A. Acuña ◽  
J. B. Sosa ◽  
E. Durazo ◽  
...  

Here we use finite element analysis to determine the suitability of basalt fiber as a substitute for E-glass in structural applications, which would improve the cost effectiveness of small wind turbine blades. Five NACA (National Advisory Committee for Aeronautics) profiles were evaluated to select the optimum shape for the wind operation conditions. To obtain the wind load pressure distribution over the blade, a computational aerodynamic analysis by CFD (computational fluid dynamics) was performed based on the blade’s design and operating conditions. Material properties and mechanical tests were carried out to obtain the fiber volume fraction, density, Young’s modulus, shear modulus, and Poisson relation of polymeric matrix composites made using basalt and fiberglass. The obtained wind loads and material properties were used on a FEM (finite element model) analysis to evaluate the structural behavior of the blade under normal and critical operating conditions. Both fibers meet the structural requirements under normal operating conditions. We detected a reduction of 4% in the blade stress when basalt fibers are used instead of glass fibers, and a reduction of 68% in the total deformation for a critical load case of 40 m/s was obtained when using basalt fibers, which met the structural requirements and maximum power generation required for this wind turbine design.


Author(s):  
Lars P. Nielsen

When considering offshore monopile foundations designed for wind turbine support structures, a grouted connection between the monopile and an overlapping transition piece has become the de facto standard. These connections rely on axial loads being carried primarily by the bond between the steel and grout as shear. Given the critical nature of the grouted connection in a system with zero redundancy, the current design verification requirement is that a finite element analysis is performed to ascertain the viability of the connection with respect to combined axial and bending capacity whilst pure axial capacity is handled as a decoupled phenomenon using simple analytical formulas. The present paper addresses the practical modeling aspects of such a finite element model, covering subjects such as constitutive formulations for the grout, mesh density, and steel/grout interaction. The aim of the paper is to discuss different modeling approaches and, to the extent possible, provide basic guidelines for the minimum requirements valid for this type of analysis. This discussion is based on the accumulated experience gained though the independent verification of more than 10 currently operational offshore wind farms that have been certified by DNV, as well as the significant joint research and development with industry captured in the DNV Offshore Standard for Design of Offshore Wind Turbine Structures DNV-OS-J101. Moreover, general observations relating to the basic subjects such as overall geometric extent of the model, inclusion of secondary structures, detail simplification, boundary conditions, load application etc. are presented based on the authors more than 3 year involvement on the subject at DNV.


Author(s):  
Jihua Gou ◽  
Fei Liang ◽  
Yong Tang ◽  
Kuo-Chi Lin ◽  
Chan Ham ◽  
...  

Energy is an essential ingredient of socio-economic development and economic growth. Renewable energy sources like wind energy is indigenous and can help in reducing the dependency on fossil fuels. It has been estimated that roughly 10 million MW of energy are continuously available in the earth’s wind. Wind energy provides a variable and environmental friendly option and national energy security at a time when decreasing global reserves of fossil fuels threatens the long-term sustainability of global economy. Wind energy is the only power generation technology that can deliver the necessary cuts in CO2 in the critical period up to 2020, when greenhouse cases must peak and begin to decline to avoid dangerous climate change. Over the past ten years, global wind power capacity has continued to grow at an average cumulative rate of over 30%, and 2008 was another record year with more than 27 GW of new installations, bringing the total up to over 120 GW.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Ho Seo ◽  
Moo Sung Ryu ◽  
Ki-Yong Oh

The dynamic characteristics of an offshore wind turbine with tripod suction buckets are investigated through finite element analysis and full-scale experiments. In finite element analysis, an integrated framework is suggested to create a simple yet accurate high fidelity model. The integrated framework accounts for not only the strain dependency of the soil but also for all dynamics in the seabed, including those of the soil, suction bucket skirt, and cap. Hence, the model accurately describes the coupling effect of translational and rotational motions of the seabed. The prediction results are compared to the experimental results obtained via full-scale testing in four stages during construction and in several operational conditions. The comparison shows that the stiffness of the suction bucket cap and strain dependency of the soil play a significant role in predicting natural frequency, suggesting that these two factors should be considered in finite element analysis for the accurate prediction of dynamic responses of an offshore wind conversion system. Moreover, dynamic analysis of the strain and acceleration measured during operational conditions shows that strain is more robust than acceleration with regard to the characterization of the overall dynamics of an offshore wind conversion system because the natural frequency of an offshore wind turbine is very low. It can be inferred that the measurement of strain is a more effective way to monitor the long-term evolution of dynamic characteristics. The suggested integrated framework and measurement campaign are useful not only to avoid conservatism that may incur additional costs during load calculation and design phases but also to establish an intelligent operation and maintenance strategy with a novel sensing technique.


Sign in / Sign up

Export Citation Format

Share Document