A New Three-Dimensional Moving Timoshenko Beam Element for Moving Load Problem Analysis

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Yan Xu ◽  
Weidong Zhu ◽  
Wei Fan ◽  
Caijing Yang ◽  
Weihua Zhang

Abstract A new three-dimensional moving Timoshenko beam element is developed for dynamic analysis of a moving load problem with a very long beam structure. The beam has small deformations and rotations, and bending, shear, and torsional deformations of the beam are considered. Since the dynamic responses of the beam are concentrated on a small region around the moving load and most of the long beam is at rest, owing to the damping effect, the beam is truncated with a finite length. A control volume that is attached to the moving load is introduced, which encloses the truncated beam, and a reference coordinate system is established on the left end of the truncated beam. The arbitrary Lagrangian–Euler method is used to describe the relationship of the position of a particle on the beam between the reference coordinate system and the global coordinate system. The truncated beam is spatially discretized using the current beam elements. Governing equations of a moving element are derived using Lagrange’s equations. While the whole beam needs to be discretized in the finite element method or modeled in the modal superposition method (MSM), only the truncated beam is discretized in the current formulation, which greatly reduces degrees-of-freedom and increases the efficiency. Furthermore, the efficiency of the present beam element is independent of the moving load speed, and the critical or supercritical speed range of the moving load can be analyzed through the present method. After the validation of the current formulation, a dynamic analysis of three-dimensional train–track interaction with a non-ballasted track is conducted. Results are in excellent agreement with those from the commercial software simpack where the MSM is used, and the calculation time of the current formulation is one-third of that of simpack. The current beam element is accurate and more efficient than the MSM for moving load problems of long three-dimensional beams. The derivation of the current beam element is straightforward, and the beam element can be easily extended for various other moving load problems.

2003 ◽  
Vol 259 (2) ◽  
pp. 473-480 ◽  
Author(s):  
A. BAZOUNE ◽  
Y.A. KHULIEF ◽  
N.G. STEPHEN

2018 ◽  
Vol 25 (3) ◽  
pp. 593-611
Author(s):  
Xiayang Zhang ◽  
Haoquan Liang ◽  
Meijuan Zhao

This paper, taking the clamped boundary condition as an example, develops Su and Ma's fundamental solutions of the dynamic responses of a Timoshenko beam subjected to impact load. Based on that, a further extension regarding the general moving load case is also established. Kelvin–Voigt damping, whether proportionally or nonproportionally damped, is incorporated into the model, making it more comprehensive than the model of Su and Ma. Numerical inverse Laplace transformation is introduced to obtain the time-domain solution, where Durbin's formula and the corresponding convergence criteria are utilized in numerical experiments. Further, the real modal superposition method is applied at an analytical level to validate the numerical results by applying a proportionally damped condition. Total comparisons are made between the methods by sufficient case studies. The dynamic responses with and without damping effect are computed with wider slenderness to verify the correctness and effectiveness of the numerical results. Furthermore, parametric studies regarding the damping coefficients are performed to explore the nonproportional damping effect. The results show that the structural damping has significant influences on the dynamic behaviors and is especially stronger at small slender ratios. As the damping decreases the inherent frequencies and excites the low-frequency modal components more actively, a resonant phenomenon appears in high slenderness case when the beam experiences a low-speed moving load. Additionally, the computations in the moving load case indicate that the algorithm convergence is preferable when the number of grids exceeds 1000.


Author(s):  
Bingxi Zhao ◽  
Qi Yuan ◽  
Pu Li

Abstract Rod fastening rotor (RFR), as a typical rotor structure of gas turbine which is different from the integral rotor, is comprised of a set of discs clamped together by a central tie rod or several tie rods on the pitch circle diameters. In process of machining, tolerances of the disc are inevitable, of which the parallelism error and mass imbalance are focused on in this paper. Firstly, the complex bending of RFR by accumulation of parallelism errors of discs is derived through the coordinate transmission. Then the static analysis of RFR is performed to obtain the additional pressure by the effect of unbalanced forces, which is related to the assembly angles and rotating speed, on contact surfaces using a linear hypothesis, based on which the distribution of contact pressure considering the original pre-tightening force is obtained. Then the Bifractal-Regular theory is adopted to acquire the micro-topography of the contact interface and derive the contact stiffness related to normal contact pressure, fractal upper length limit and regular shape of the contact interfaces. After that, the zero thickness element is introduced to obtain the equivalent stiffness matrices of the contact surface. In addition, the circumferential uniformly distributed rods are modeled as a spring element which provides additional bending stiffness for the RFR. Based on the analysis above, the dynamic model of the RFR-bearing system containing 10 discs is established using the Timoshenko beam element where the continuous part of the shaft is modeled by Timoshenko beam element considering shear effect. Finally, the multi-optimization is carried out on the vibration response by the coupled effects of both initial bending and mass imbalance of the RFR-bearing system through which the optimal assembly angles are obtained. The results show a good performance in decreasing vibration as well as bending of the RFR system.


Sign in / Sign up

Export Citation Format

Share Document