A Computational Technique to Evaluate the Relative Influence of Internal and External Cooling on Overall Effectiveness

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Carol E. Bryant ◽  
James L. Rutledge

Abstract Gas turbine components are protected via a coolant that travels through internal passageways before being ejected as external film cooling. Modern computational approaches facilitate the simulation of the conjugate heat transfer that takes place within turbine components, allowing the prediction of the actual metal temperature, nondimensionalized as overall effectiveness. Efforts aimed at improving cooling are often focused on either the internal cooling or the film cooling; however, the common coolant flow means that the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. The relative influence of internal cooling, external cooling, and convection through the film cooling holes on overall effectiveness is not well understood. Computational fluid dynamics (CFD) simulations were performed to isolate each cooling mechanism, and thereby determine their relative contributions to overall effectiveness. The conjugate CFD model was a flat plate with five staggered rows of shaped film cooling holes. Unique boundary conditions were used to isolate the cooling mechanisms. The internal surface was modeled with and without heat transfer on the internal face in order to isolate the effects of plenum cooling. Convection through the coolant holes was isolated by making the inside of the film cooling holes adiabatic to evaluate the influence of the internal cooling provided by the cooling holes themselves. Finally, the effect of film cooling was removed through the novel use of an outlet boundary condition at the exit of each hole that allowed the internal coolant flow without external coolant ejection.

Author(s):  
Carol E. Bryant ◽  
James L. Rutledge

Abstract Gas turbine hot gas path components are protected via coolant that travels through internal passageways before being ejected as external film cooling. Modern computational approaches facilitate simulation of the conjugate heat transfer that takes place within turbine components, allowing prediction of the actual metal temperature, usually nondimensionalized in the form of the overall effectiveness. Efforts aimed at improving cooling are often focused on either only the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are inextricably linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. The relative influence of internal cooling, external cooling, and convection through the film cooling holes on overall effectiveness is not well understood. Computational fluid dynamics (CFD) simulations were performed in order to isolate each cooling mechanism, and thereby determine their relative contributions to overall effectiveness. The conjugate CFD model was a flat plate with five staggered rows of shaped film cooling holes. Unique boundary conditions were used to isolate the cooling mechanisms. The internal cooling was modeled with and without heat transfer on the internal surface in order to isolate the effects of plenum cooling. Convection through the coolant holes was isolated by making the inside of the film cooling holes adiabatic. This was done in order to evaluate the influence of the internal cooling provided by the cooling holes themselves. The effect of film cooling was removed through the novel use of an outlet boundary condition at the exit of each hole that allowed unaltered internal coolant flow without external coolant ejection.


Author(s):  
Carol E. Bryant ◽  
Connor J. Wiese ◽  
James L. Rutledge ◽  
Marc D. Polanka

Gas turbine hot gas path components are protected through a combination of internal cooling and external film cooling. The coolant typically travels through internal passageways, which may involve impingement on the internal surface of a turbine component, before being ejected as film cooling. Internal cooling effects have been studied in facilities that allow measurement of heat transfer coefficients within models of the internal cooling paths, with large heat transfer coefficients generally desirable. External film cooling is typically evaluated through measurements of the adiabatic effectiveness and its effect on the external heat transfer coefficient. Efforts aimed at improving cooling are often focused on either only the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Recently, measurements of overall cooling effectiveness using matched Biot number turbine component models allow evaluation of the nondimensional wall temperature achieved for the fully cooled component. However, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes is not well understood. Large scale, matched Biot number experiments, complemented by CFD simulations, were performed on a fully film cooled cylindrical leading edge model to evaluate the effects of various alterations in the cooling design on the overall effectiveness. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how the overall effectiveness changed. Several internal impingement cooling schemes in addition to a baseline case without impingement cooling were also tested. In general, impingement cooling is shown to have a negligible influence on the overall effectiveness in the showerhead region. This indicates that the cost and pressure drop penalties for implementing impingement cooling may not be compensated by an increase in thermal performance. Instead, the internal cooling provided by convection within the holes themselves was shown, along with external film cooling, to be a dominant contribution to the overall cooling effectiveness. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. The results of this research may allow improved focus of future efforts on the forms of cooling with the greatest potential to improve cooling performance.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Carol E. Bryant ◽  
Connor J. Wiese ◽  
James L. Rutledge ◽  
Marc D. Polanka

Gas turbine components are protected through a combination of internal cooling and external film cooling. Efforts aimed at improving cooling are often focused on either the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Measurements of overall cooling effectiveness, ϕ, using matched Biot number models allow evaluation of fully cooled components; however, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes are not well understood. Matched Biot number experiments, complemented by computational fluid dynamics (CFD) simulations, were performed on a fully film cooled cylindrical leading edge model to quantify the effects of alterations in the cooling design. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how ϕ changed. Testing of several impingement cooling schemes revealed that impingement has a negligible influence on ϕ in the showerhead region. This indicates that the pressure drop penalties with impingement may not always be compensated by an increase in ϕ. Instead, internal cooling from convection within the holes and film cooling were shown to be the dominant contributors to ϕ. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. These results may allow improved focus of efforts on the forms of cooling with the greatest potential to improve performance.


Author(s):  
Lv Ye ◽  
Zhao Liu ◽  
Xiangyu Wang ◽  
Zhenping Feng

This paper presents a numerical simulation of composite cooling on a first stage vane of a gas turbine, in which gas by fixed composition mixture is adopted. To investigate the flow and heat transfer characteristics, two internal chambers which contain multiple arrays of impingement holes are arranged in the vane, several arrays of pin-fins are arranged in the trailing edge region, and a few arrays of film cooling holes are arranged on the vane surfaces to form the cooling film. The coolant enters through the shroud inlet, and then divided into two parts. One part is transferred into the chamber in the leading edge region, and then after impinging on the target surfaces, it proceeds further to go through the film cooling holes distributed on the vane surface, while the other part enters into the second chamber immediately and then exits to the mainstream in two ways to effectively cool the other sections of the vane. In this study, five different coolant flow rates and six different inlet pressure ratios were investigated. All the cases were performed with the same domain grids and same boundary conditions. It can be concluded that for the internal surfaces, the heat transfer coefficient changes gradually with the coolant flow rate and the inlet total pressure ratio, while for the external surfaces, the average cooling effectiveness increases with the increase of coolant mass flow rates while decreases with the increase of the inlet stagnation pressure ratios within the study range.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Marc Fraas ◽  
Tobias Glasenapp ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig, which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10–10–10 deg laidback fan-shaped cooling hole is discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near-hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Amy Mensch ◽  
Karen A. Thole

Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer, along with solid conduction, determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the nondimensional external surface temperature, known as overall effectiveness, of an endwall with nonaxisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the effectiveness of impingement alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and the contoured endwalls. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Marc L. Nathan ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

There have been a number of previous studies of the adiabatic film effectiveness for the showerhead region of a turbine vane, but no previous studies of the overall cooling effectiveness. The overall cooling effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components, and the internal cooling is designed so that the ratio of the external to internal heat transfer coefficient is matched to that of the engine. In this study, the overall effectiveness was experimentally measured on a model turbine vane constructed of a material to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. The cooling design consisted of a showerhead composed of five rows of holes with one additional row on both pressure and suction sides of the vane. An identical model was also constructed out of low conductivity foam to measure adiabatic film effectiveness. Of particular interest in this study was to use the overall cooling effectiveness measurements to identify local hot spots which might lead to failure of the vane. Furthermore, the experimental measurements provided an important database for evaluation of computational fluid dynamics simulations of the conjugate heat transfer effects that occur in the showerhead region. Continuous improvement in both measures of performance was demonstrated with increasing momentum flux ratio.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Beni Cukurel ◽  
Claudio Selcan ◽  
Tony Arts

The present study is geared towards quantifying the effects of film cooling holes on turbine internal cooling passages. In this regard, tests are conducted in a generic stationary model, with evenly distributed rib-type perturbators at 90 deg, constituting a passage blockage ratio of H/Dh = 0.3 and pitch-to-height ratio of P/H = 10. The 1/3H diameter surface-perpendicular film cooling holes are employed at a distance of 5/3H downstream of the preceding rib. Through liquid crystal thermometry measurements, the aero-thermal effects of a change in suction ratio are contrasted for various configurations (Re = 40,000 SR = 0–6), and compared with the analogous aerodynamic literature, enabling heat transfer distributions to be associated with distinct flow structures. At increased suction ratio, the size of the separation bubble downstream of the rib is observed to diminish, triggering globally an earlier reattachment; in addition to low-momentum hot fluid extraction via film cooling suction. Hence, in the presence of active flow extraction, higher overall heat transfer characteristics are observed throughout the channel. Moreover, the findings are generalized via friction factor and Nusselt number correlations, along with an analytical 20-pitch passage model. SR ∼ 3.5 is observed to provide favorable characteristics of pitch-to-pitch uniform suction ratio, lack of hot fluid ingestion and to sustain the highest passage averaged heat transfer.


Author(s):  
B. Cukurel ◽  
C. Selcan ◽  
T. Arts

The present study is geared towards quantifying the effects of film cooling holes on turbine internal cooling passages. In this regard, tests are conducted in a generic stationary model, with evenly distributed rib type perturbators at 90°, constituting a passage blockage ratio of H/Dh = 0.3 and pitch-to-height ratio of P/H = 10. The 1/3H diameter surface-perpendicular film cooling holes are employed at a distance of 5/3H downstream of the preceding rib. Through liquid crystal thermometry measurements, the aero-thermal effects of a change in suction ratio are contrasted for various configurations (Re = 40,000 SR = 0–6), and compared with the analogous aerodynamic literature, enabling heat transfer distributions to be associated with distinct flow structures. At increased suction ratio, the size of the separation bubble downstream of the rib is observed to diminish, triggering globally an earlier reattachment, in addition to low-momentum hot fluid extraction via film cooling suction. Hence, in the presence of active flow extraction, higher overall heat transfer characteristics are observed throughout the channel. Moreover, the findings are generalized via friction factor and Nusselt number correlations, along with an analytical 20-pitch passage model. SR∼3.5 is observed to provide favorable characteristics of pitch-to-pitch uniform suction ratio, lack of hot fluid ingestion and to sustain the highest passage averaged heat transfer.


Author(s):  
Marc L. Nathan ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

There have been a number of previous studies of the adiabatic film effectiveness for the showerhead region of a turbine vane, but no previous studies of the overall cooling effectiveness. The overall cooling effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components, and the internal cooling is designed so that the ratio of the external to internal heat transfer coefficient is matched to that of the engine. In this study, the overall effectiveness was experimentally measured on a model turbine vane constructed of a material to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. The cooling design consisted of a showerhead composed of five rows of holes with one additional row on both pressure and suction sides of the vane. An identical model was also constructed out of low conductivity foam to measure adiabatic film effectiveness. Of particular interest in this study was to use the overall cooling effectiveness measurements to identify local hot spots which might lead to failure of the vane. Furthermore, the experimental measurements provided an important database for evaluation of CFD simulations of the conjugate heat transfer effects that occur in the showerhead region. Continuous improvement in both measures of performance was demonstrated with increasing momentum flux ratio.


Sign in / Sign up

Export Citation Format

Share Document